Towards realistic 3D elastic models of Canadian channel and reef structures

> <u>Gary F. Margrave, Samantha Taylor, and</u> Joanna K. Cooper

CREWES

#### Plan

- Define 3D heterogeneous elastic models of important Canadian exploration targets.
- Models should be "typical" but not represent any specific structure.
- Channel model adapted from Bow River. Reef model adapted from Rainbow "Eh".
- Create realistic 3D seismic response of the models.
  Use to test imaging algorithms, evaluate footprint, etc.

#### Strategy

- Hire a geologist.
  - Create (draw) maps of a small number of depth levels in the structure.
- Maps define polygons of different lithologies. Assign values of Vp, Vs, and density to each lithology.
- Interpolate new levels between the original levels.
- Attach a laterally invariant background model defined from logs.
- Compute seismic.

# **CREWES Channel Model**



#### **Model Construction**

- Create vertically stratified, laterally invariant overburden from smoothed Blackfoot well logs.
- Five channel maps were drawn and digitized. Each channel map resulted in three parameter maps (Vp, Vs, and Rho) consisting of polygonal regions with constant material fill.
- Elastic parameters taken from Glauconitic channel at Blackfoot about 1.5 km depth. Rescaled to fit background model at 1 km.

Background velocity and density Adapted from Blackfoot logs



# **Upper Channel Vp**



#### Second Channel Vp



#### **Upper Channel after rescaling**



#### **Upper Channel after rescaling**

Top channel map, Vp/Vs (rescaled)



#### **Upper Channel after rescaling**

Second channel map, Vp/Vs (rescaled)



#### **Model Construction**

- Sample each parameter map at several hundred discrete points, apply random fluctuations to each sampled point.
- Use 3D kriging to create 13 maps for each parameter, representing a channel sequence 120m thick.

#### **Model Construction**



Five maps drawn and digitized

→3D Kriging < (Matlab)



Two maps were kriged between each of the five original maps for 13 total.

Total channel thickness of 120 meters using a 10m separation.

#### **Upper Channel as Digitized (zoom)**



# Upper Channel after krigging (zoom)

Channel, Vp, depth 1000m



# Vp Channel 1000m

Channel, Vp, depth 1000m



# Vp Channel 1010m



# Vp Channel 1020m



# Vp Channel 1030m



# Vp Channel 1040m



# Vp Channel 1050m



# Vp Channel 1060m



# Vp Channel 1070m



# Vp Channel 1080m



# Vp Channel 1090m



# Vp Channel 1100m



# Vp Channel 1110m

Channel, Vp, depth 1110m meters meters

# Vp Channel 1120m



# Vp/Vs Channel 1000m



# Vp/Vs Channel 1010m



# Vp/Vs Channel 1020m



# Vp/Vs Channel 1030m



# Vp/Vs Channel 1040m



# Vp/Vs Channel 1050m



# Vp/Vs Channel 1060m



# Vp/Vs Channel 1070m



# Vp/Vs Channel 1080m



# Vp/Vs Channel 1090m



# Vp/Vs Channel 1100m



# Vp/Vs Channel 1110m



# Vp/Vs Channel 1120m



#### **Vp Vertical Slice**

#### Vp Vertical slice at x=1618



#### **Vp Vertical Slice**

#### Vp Vertical slice at y=1618



# **Vs Vertical Slice**



#### **Vs Vertical Slice**





#### **Density Vertical Slice**

#### Rho Vertical slice at x=1618



#### **Density Vertical Slice**

#### Rho Vertical slice at y=1618



#### Reef Parallel cross sections



#### Seismic Modelling

 Tiger: full-featured finite difference software from SINTEF Petroleum Research of Trondheim, Norway.

Acoustic, Elastic, Aniso-elastic, Visco-elastic.

- 3D Parameter volumes imported from Matlab.
- Parallel execution on CREWES Linux cluster.
- 8 days to compute 241 elastic shots.

Rayleigh-Sommerfeld modelling (Margrave et al. 2007)

- Modified for P-wave AVO (Cooper et al. 2008).
- Parallel execution via parallel Matlab.
- 10 hours to compute 241 P-P AVO shots

#### Rayleigh-Sommerfeld Modelling (Phase-shift migration backwards)



#### Center Shot (Tiger Acoustic) vertical displacement



Runs orthogonal to channel through center of model

#### Center Shot (Tiger Elastic) vertical displacement



Runs orthogonal to channel through center of model

#### Center Shot (Tiger Acoustic 1chan) vertical displacement



Runs orthogonal to channel through center of model

#### Center Shot (Rayleigh-Sommerfeld)



Runs orthogonal to channel through center of model

#### Center Shot (Tiger Acoustic) time slice at 0.8 seconds



#### Center Shot (Tiger Acoustic 1chan) time slice at 0.8 seconds



#### Center Shot (Rayleigh-Sommerfeld) time slice at 0.8 seconds



#### Center Shot (Tiger Elastic) time slice at 0.8 seconds Vertical Component



#### Center Shot (Tiger Elastic) time slice at 0.8 seconds Horizontal (x) Component



#### Center Shot (Tiger Elastic) time slice at 0.8 seconds Horizontal (y) Component



#### **Post Migration AVO Analysis**

Channel, Vp, depth 1000m



#### Migrations: Rayleigh-Sommerfeld Model depth slices channel level



#### **Common Image Gathers** 189 Shots along channel axis



#### **Extracted AVO**



#### Conclusions

- Two Canadian stratigraphic models are being constructed representing channel and reef structures.
- Models have realistic elastic parameters and material gradients.
- Seismic data is now being calculated. Finite-difference elastic (60 Hz high frequency) and Rayleigh-Sommerfeld P-P AVO (120 Hz high frequency) are being created.

Data should be available in the first quarter of 2009.
Further models are planed and Sponsor input is desired.

#### Acknowledgements

# Thanks are due to CREWES and POTSI sponsors

#### We also thank NSERC, MITACS and Alberta Ingenuity