Color correction for Gabor deconvolution and Nonstationary Phase Rotations

Peng Cheng and Gary F. Margrave November, 20, 2008

Outline

Gabor deconvolution

Color correction methods

Nonstationary phase rotation

Conclusions

- Gabor Transform (GT)
- Extend FT to the nonstationary realm

$$S_G(\tau, f) = \int_{-\infty}^{\infty} s(t)g(t-\tau)e^{-i2\pi ft}dt$$

g(t): Gabor analysis window

: window center

Nonstationary model of seismic traces

$$\hat{s}(f) = \hat{w}(f) \int_{-\infty}^{\infty} \alpha_{\mathcal{Q}}(\tau, f) r(\tau) e^{-i2\pi f \tau} d\tau$$

Constant-Q attenuation:

$$\alpha_{\mathcal{Q}}(\tau,f) = e^{-\frac{\pi f \tau}{\mathcal{Q}} + iH(\frac{\pi f \tau}{\mathcal{Q}})}$$

GT of attenuated seismic trace

$$S_G(\tau, f) \approx \widehat{w}(f)\alpha(\tau, f)R_G(\tau, f)$$

Estimated propagating wavelet

$$\hat{w}(f)\alpha_{\mathcal{Q}}(\tau, f) \approx \overline{|S_{G}(\tau, f)|} e^{i\varphi(\tau, f)}$$

$$\varphi(\tau, f) = \int_{-\infty}^{\infty} \frac{\ln(\overline{|S_{G}(\tau, f')|})}{f - f'} df'$$

Assumption of white reflectivity: $|R_G(\tau, f)| \approx 1$

Estimated reflectivity

$$R_G(\tau, f)_{est} = \frac{S_G(\tau, f)}{\overline{|S_G(\tau, f)|} + \mu A_{\max}} e^{-i\varphi(\tau, f)}$$

with assumption of white reflectivity

Color correction

Nonwhite reflectivity in practice

$$r_c(t) \rightarrow \mid R'_G(\tau, f) \mid \not\approx 1$$

Nonwhite reflectivity

Nonwhite reflectivity

Color correction

Condition:

$$\overline{R'_{G}(\tau, f)}$$
 is available from well log

Estimation of nonwhite reflectivity

$$R'_{G}(\tau, f)_{est} = \frac{S_{G}(\tau, f) \overline{|R'_{G}(\tau, f)|}}{\overline{|S_{G}(\tau, f)|} + \mu A_{\max}} e^{i\varphi_{c}(\tau, f)}$$

$$\varphi_c(\tau, f) = H(\ln \left| \frac{\overline{R'_G(\tau, f)}}{\overline{S_G(\tau, f)} + \mu A_{\max}} \right|)$$

Color correction

Effect of color correction

$$R'_{G}(\tau, f)_{est} = \frac{S_{G}(\tau, f) \left| R'_{G}(\tau, f) \right|}{\left| S_{G}(\tau, f) \right| + \mu A_{\max}} e^{i\varphi_{c}(\tau, f)}$$

How much does $R'_{G}(\tau, f)$ depart from unity? How reliable is $R'_{G}(\tau, f)$?

Influential factors:

- available frequency band
- completeness of well log

An ideal case of color correction

Complete well log

Broad frequency band for deconvolution

An ideal case of color correction (10-150Hz)

Effect of limited frequency band (10-100Hz)

Effect of limited frequency band (10-60Hz)

Practical color correction

Incomplete well log

seismic trace:
$$s(t)$$
 $t \in (0, t_{\text{max}})$ well log: $\widetilde{r}_c(t)$ $t \in (t_1, t_2)$ $0 < t_1 < t_2 < t_{\text{max}}$

$$|\widetilde{r}_c(t) \rightarrow |\overline{R'_G(\tau, f)}|$$
?

Practical color correction

Creation of correction pattern

Method 1:

$$\begin{aligned}
\widetilde{r}_c(t) &\to \widetilde{R}_c(f) \\
&|\widetilde{R}_c(f)| \approx a_0 + a_1 f + a_2 f^2 \\
&|\overline{R'_G(\tau, f)}| = a_0 + a_1 f + a_2 f^2
\end{aligned}$$

Color feature is temporally stationary

Practical color correction (method 1)

Practical color correction (method 1)

Practical color correction

Method 2: color feature is time-variant

$$\begin{split} \widetilde{r}_{c}(t) \to & \widetilde{R}_{G}(\tau, f) \\ & | \widetilde{R}_{G}(\tau, f) | \approx a'_{0}(\tau) + a'_{1}(\tau) f + a'_{2}(\tau) f^{2} \qquad \tau \in [t_{1}, t_{2}] \\ & | \overline{R'_{G}(\tau, f)} | = a_{0}(\tau) + a_{1}(\tau) f + a_{2}(\tau) f^{2} \qquad \tau \in [0, t_{\max}] \\ a'_{i}(\tau) = & \begin{cases} a'_{i}(t_{1}), 0 \le \tau \le t_{1} \\ a'_{i}(\tau), t_{1} < \tau < t_{2} \quad i = 1, 2, 3 \\ a'_{i}(t_{2}), t_{2} \le \tau \le t_{\max} \end{cases} \end{split}$$

Practical color correction (method 2)

Practical color correction (method 2)

Practical color correction

Method 3: extension of method 2

 $a_i(\tau)$ can be obtained through interpolation when multiple well logs are available.

Practical color correction (method 3)

Practical color correction (method 3)

Nonstationary phase rotation

Constant phase rotation

$$s_{\theta}(t) = s(t)\cos\theta + s_{\pi/2}(t)\sin\theta$$

Nonstationary phase rotation

$$s'_{\theta}(t) = s(t)\cos\theta(t) + s_{\pi/2}(t)\sin\theta(t)$$
?

Removal of nonstationary phase rotation

Method 1

remove the phase rotation in Gabor windows

Method 2

$$g(t) = s'_{\theta}(t)$$

$$s'(t) = g(t)\cos\theta(t) - g_{\pi/2}(t)\sin\theta(t)$$
 ?

Measured T.V. phase rotation after G.D.

Measured T.V. phase rotation after phase rotation removal

Conclusions

- Real reflectivity is not white and its color feature is time-variant.
- White assumption causes distortion in conventional Gabor decon.
- Color correction is the most important if frequency band is broad
- Three effective methods for practical color correction were shown
- Practical way to define and remove nonstationary phase rotation was investigated

Acknowledgement

- Sponsors of the CREWES project
- NSERC and MITACS

Thank you!