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Absorptive reflection coefficients
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Absorptive reflection coefficients

At a plane boundary separating medium 0 and 1:

R =
kz − k ′z
kz + k ′z

Q in the lower medium gives R some interesting characteristics. At
normal incidence:
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Absorptive reflection coefficients

We can express R in a number of ways. If ω is a parameter, R varies with
θ as
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c1 cos θ − c0
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Absorptive reflection coefficients

...or, if kz is a parameter, R varies with θ as
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The forward problem and the inverse problem

Problem:

Given R at several values of these experimental variables, and the value
of c in the incidence medium (medium 0), determine the values of c and
Q in the target medium (medium 1).



Series expansions of R

Examples of quantities in R that are sometimes small, but not always, are
the contrasts in wavespeed and Q from medium 0 to medium 1, and the
angle of incidence θ.

Let us expand R about small
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Series expansions of R

If ω is treated as a parameter, R expands as
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Series expansions of R

Or, using
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Direct AVF inversion for wavespeed and Q

Next, we form an inverse series for the unknown(s).

Begin with a simple example, to see how an inverse series solution
operates (as well as convince ourselves it gives the right answer).
Starting with Rω(θ), specify a normal incidence problem:
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Direct AVF inversion for wavespeed and Q

Further, let us take the case in which only Q varies, i.e., α = 0:
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Direct AVF inversion for wavespeed and Q

...and solve for β; if the contrast is small, perhaps even linearize:

β = − 2

F (ω)

Rω
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Most important here is the series form of this exact solution.



Direct AVF inversion for wavespeed and Q

Try to recover this same answer by forming an inverse series for β:

β = β1 + β2 + β3 + ...

where βn is defined to be the component of β that is n’th order in the
data (i.e., Rω at whichever set of frequencies we employ).



Direct AVF inversion for wavespeed and Q

Substitute this into the forward problem:

Rω = −1

2
F (ω)β +

1

4
F 2(ω)β2 − ...

= −1

2
F (ω)[β1 + β2 + ...] +

1

4
F 2(ω)[β1 + β2 + ...]2 − ...



Direct AVF inversion for wavespeed and Q

...and equate like orders:

β1 = − 2
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Rω,

at first order,
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at second order, etc. Comparing to the expansion of the exact solution:
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...good news: we recover the correct answer.



Direct AVF inversion for wavespeed and Q

The “real” problem is to be able to determine simultaneous variations in
c1, Q1. Given R at normal incidence, we may attempt this using its
frequency dependence:
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Direct AVF inversion for wavespeed and Q

Return to the normal incidence series for Rω:

Rω(θ)|θ=0 =
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Direct AVF inversion for wavespeed and Q

Equating like orders:
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etc. Now we must cope with the fact that variations in either α or β may
have affected R. Notice, however, that if we take Rω at two different
frequencies and subtract, we isolate the influence (to first order) of β1.



Direct AVF inversion for wavespeed and Q

In fact,

α1 = 4
Rω1F (ω2)− Rω2F (ω1)

F (ω2)− F (ω1)
,

β1 = 2
Rω1 − Rω2

F (ω2)− F (ω1)
,

We may be willing to make the equivalent of the inverse Born
approximation α ≈ α1, β ≈ β1 at this stage.



Direct AVF inversion for wavespeed and Q

But we may also continue, if the contrasts causing R are thought to be
large. Solving for α2 and β2 in terms of α1 and β1, we introduce a
correction to the linear inversion, obtaining a direct, non-linear formula
for c1 and Q1.

α ≈ α1 + α2 = α1 −
1

2
α2

1 − β2
1

(
F 2(ω1)F (ω2)− F 2(ω2)F (ω1)

F (ω2)− F (ω1)

)
,

β ≈ β1 + β2 = β1 +
1

2
[F (ω2) + F (ω1)]β2

1 .



Direct AVF inversion for wavespeed and Q

Numerically how do the linear and non-linear formulas behave? If we
choose c0 =1500m/s, c1 =1800m/s, Q1 =10, the real part of R looks
like:
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Direct AVF inversion for wavespeed and Q

Next, fix ω1 at 1Hz, vary ω2 from 2-100Hz, and invert using each (ω1, ω2)
pair. The linear inverse and the direct non-linear correction then look like:
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Direct AVA inversion for wavespeed and Q: a quick look

Forming again inverse series for α and β, to first order we obtain

β ≈ β1 = 2
Rkz(θ1) cos2 θ1 − Rkz(θ2) cos2 θ2

Fkz(θ2)− Fkz(θ1)
,

α ≈ α1 = 4
Rkz(θ1) cos2 θ1Fkz(θ2)− Rkz(θ2) cos2 θ2Fkz(θ1)

Fkz(θ2)− Fkz(θ1)
.



Direct AVA inversion for wavespeed and Q: a quick look

...and to second order

β ≈ β1 + β2 = 2
R̃kz(θ1) cos2 θ1 − R̃kz(θ2) cos2 θ2

Fkz(θ2)− Fkz(θ1)

α ≈ α1 + α2 = 4
R̃kz(θ1)Fkz(θ2) cos2 θ1 − R̃kz(θ2)Fkz(θ1) cos2 θ2

Fkz(θ2)− Fkz(θ1)
,
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Comments and next steps

I As seismic measurements (in particular amplitudes) become more
precisely measured, direct, linear/non-linear formulas may be derived
for direct determination of target absorptive properties

I These “inverse series” results are a special, simplified form of inverse
scattering

I Next steps: anelastic theory, field-estimated R from absorptive
targets
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