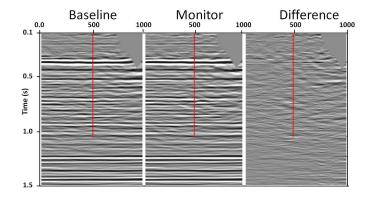
Application of surface-consistent matching filters (SCMF) to time-lapse data set

Mahdi Almutlaq and Gary F. Margrave

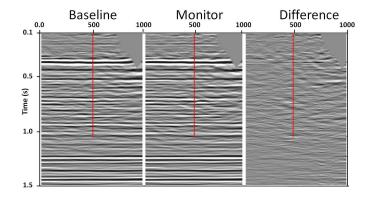
University of Calgary, Department of Geoscience, CREWES

December 02, 2011

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで



◆□ → ◆□ → ◆三 → ◆三 → ○へ ⊙

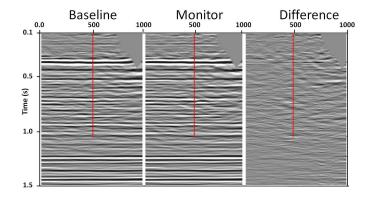


<ロ> (四) (四) (三) (三) (三)

æ

Our goal is to design matching filters that

scale data to same amplitude level

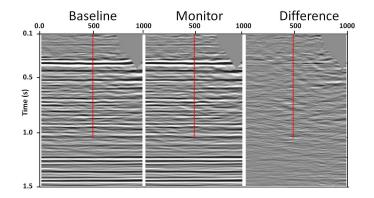


<ロ> (四) (四) (三) (三)

æ

Our goal is to design matching filters that

- scale data to same amplitude level
- equalize phase and bandwidth



▲日 > ▲ ● > ▲ ● > ▲ ● >

æ

Our goal is to design matching filters that

- scale data to same amplitude level
- equalize phase and bandwidth
- compensate for time-shifts

Outline

Surface-consistent matching filters

- Surface-consistent model
- Matching filters
- Surface-consistent matching filters

(日) (문) (문) (문) (문)

2 Constructing the matching filters

- Time-lapse data set
- How do we get the SCMF?

• 2D example

4 Conclusions

Surface-consistent model

The seismic trace can be modeled as

$$d_{ij}(t) = s_i(t) * r_j(t) * h_k(t) * y_l(t)$$

< □ > < @ > < 注 > < 注 > ... 注

where

- *d_{ij}*: seismic trace
- s_i : source response at location i
- r_i : receiver response at location j
- h_k : offset response at location k; k = |i j|
- y_l : subsurface response at l; $l = \frac{(i+j)}{2}$

Time domain:

$$m * s1 = s2 \tag{1}$$

Fourier domain:

$$M(\omega) = \frac{S_2(\omega)}{S_1(\omega)}.$$
 (2)

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで

Time domain:

$$m * s1 = s2 \tag{1}$$

Fourier domain:

$$M(\omega) = \frac{S_2(\omega)}{S_1(\omega)}.$$
 (2)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Important remarks:

- a perfect matching filter is a spectral ratio; however
- spectral ratio is unstable in presence of noise; and

Time domain:

$$m * s1 = s2 \tag{1}$$

Fourier domain:

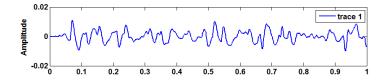
$$M(\omega) = \frac{S_2(\omega)}{S_1(\omega)}.$$
 (2)

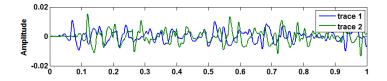
Important remarks:

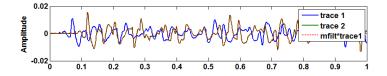
- a perfect matching filter is a spectral ratio; however
- spectral ratio is unstable in presence of noise; and

What do we do?

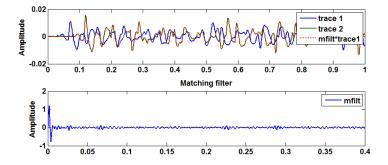
• We solve time-domain (equation 1) in LSQ sense and Fourier transform the solution which is a good approximation to the spectral ratio method.



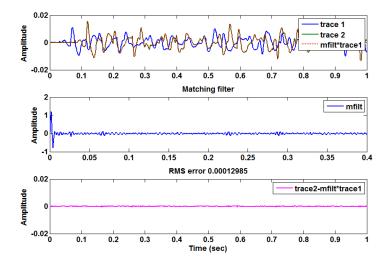




Matching filters



Matching filters



◆□▶ ◆□▶ ◆目▶ ◆目▶ 三目 - の々で

Surface-consistent model Matching filters Surface-consistent matching filters

イロン イヨン イヨン イヨン

æ

In time-lapse we normally have 2 data sets:

- Baseline survey; and
- Monitoring survey

Their surface-consistent model is:

$$d1_{ij}(t) = s1_i(t) * r1_j(t) * h1_k(t) * y1_l(t)$$

$$d2_{ij}(t) = s2_i(t) * r2_j(t) * h2_k(t) * y2_l(t)$$
 (3)

Several steps to obtain a SCMF:

Several steps to obtain a SCMF:

 ${\ensuremath{\bullet}}$ design ${\ensuremath{m}}$ such that

$$d1 = D2m, \qquad (4)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

where D2 is the convolution matrix formed from d2

Several steps to obtain a SCMF:

• design **m** such that

$$d1 = D2m, \tag{4}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

where D2 is the convolution matrix formed from d2
solve for m

$$\mathbf{m} = (\mathbf{D}\mathbf{2}^{\mathsf{T}}\mathbf{D}\mathbf{2} + \alpha^{2}\mathbf{I})^{-1}\mathbf{D}\mathbf{2}^{\mathsf{T}}\mathbf{d}\mathbf{1}$$
 (5)

Several steps to obtain a SCMF:

 \bullet design ${\bf m}$ such that

$$d1 = D2m, \tag{4}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

where D2 is the convolution matrix formed from d2 \bullet solve for m

$$\mathbf{m} = (\mathbf{D}\mathbf{2}^{\mathsf{T}}\mathbf{D}\mathbf{2} + \alpha^{2}\mathbf{I})^{-1}\mathbf{D}\mathbf{2}^{\mathsf{T}}\mathbf{d}\mathbf{1}$$
 (5)

FFT m

Several steps to obtain a SCMF:

• design **m** such that

$$d1 = D2m, \tag{4}$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

where D2 is the convolution matrix formed from d2 $\bullet\,$ solve for $m\,$

$$\mathbf{m} = (\mathbf{D}\mathbf{2}^{\mathsf{T}}\mathbf{D}\mathbf{2} + \alpha^{2}\mathbf{I})^{-1}\mathbf{D}\mathbf{2}^{\mathsf{T}}\mathbf{d}\mathbf{1}$$
 (5)

FFT m

• take the log of FFT(**m**)

Several steps to obtain a SCMF:

• design **m** such that

$$d1 = D2m, \tag{4}$$

where D2 is the convolution matrix formed from d2 $\bullet\,$ solve for $m\,$

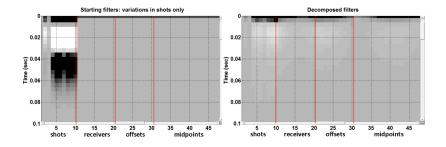
$$\mathbf{m} = (\mathbf{D}\mathbf{2}^{\mathsf{T}}\mathbf{D}\mathbf{2} + \alpha^{2}\mathbf{I})^{-1}\mathbf{D}\mathbf{2}^{\mathsf{T}}\mathbf{d}\mathbf{1}$$
 (5)

FFT m

take the log of FFT(m)

The above are trace-by-trace process. Once that complete, we

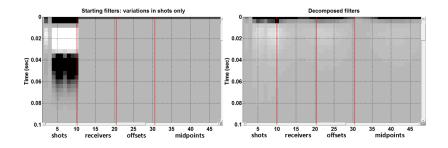
• decompose the log(FFT(m)) into four-components



(日) (四) (三) (三) (三)

æ

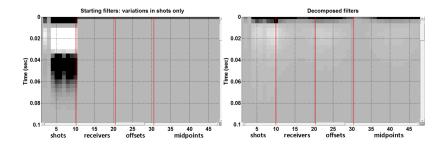
• variation in input shot filters only



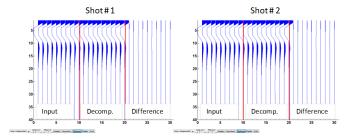
- variation in input shot filters only
- decomposed filters show variation in all components

(日) (四) (三) (三) (三)

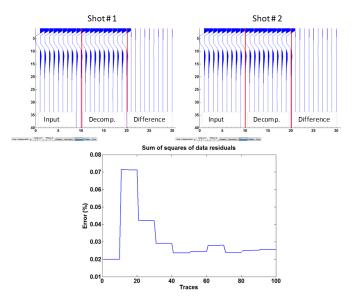
2



- variation in input shot filters only
- decomposed filters show variation in all components
- comparing the input data with the decomposed data we see the following:

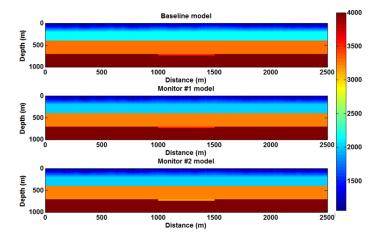


◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●



◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Time-lapse data set How do we get the SCMF?



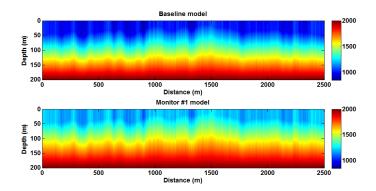
・ロト ・回ト ・ヨト

< ∃⇒

э

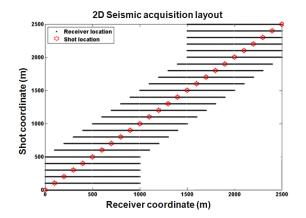
Time-lapse data set How do we get the SCMF?

Zoom in:



イロト イヨト イヨト イヨト

э

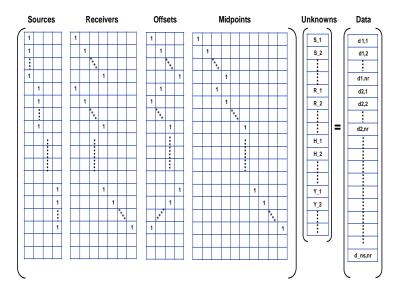


<ロ> (四) (四) (三) (三)

2

shot spacing = 100mreceiver spacing = 10mtotal number of shots = 26101 receivers per shot

How do we get the SCMF?



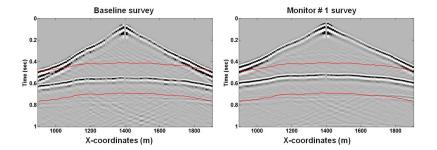
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

$$\mathbf{G}\mathbf{x} = \mathbf{p},\tag{6}$$

where **G** is the geometry matrix and **x** contains the unknown parameters. Recall that we have the log(FFT(m)), we denote it **p**, and the decomposition is:

$$\mathbf{x} = (\mathbf{G}^T \mathbf{G} + \alpha^2 \mathbf{I})^{-1} \mathbf{G}^T \mathbf{p},$$
(7)

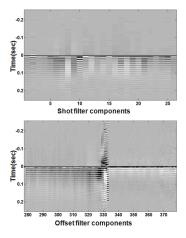
Constructing the SCMF

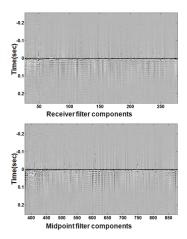


<ロ> (四) (四) (日) (日) (日)

æ

Constructing the SCMF





◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Outline Surface-consistent matching filters Constructing the matching filters Examples Conclusions Acknowledgements	2D example

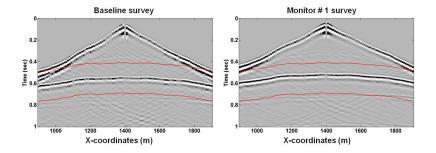
We will show two examples:

- **(**) matching monitor # 1 survey to baseline survey
- 2 matching monitor # 2 survey to monitor # 1 survey

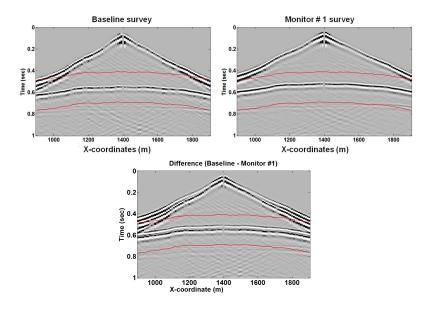
A ■

< ∃ >

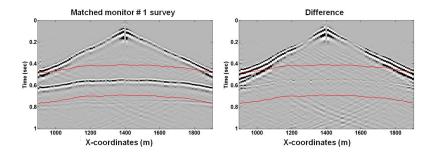
2D example 1



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで



◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで



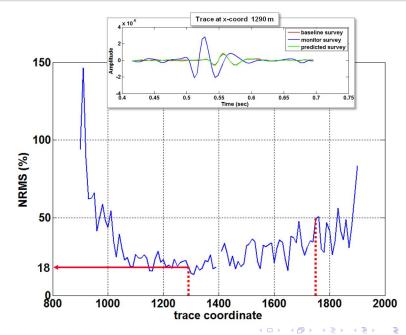
◆□ → ◆□ → ◆三 → ◆三 → ○へ ⊙

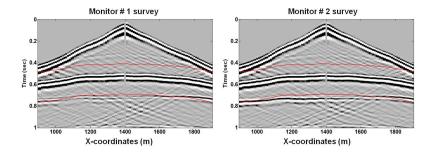
Nrms is considered as the metric system that measures the repeatability between two traces a_t and b_t in a time gate:

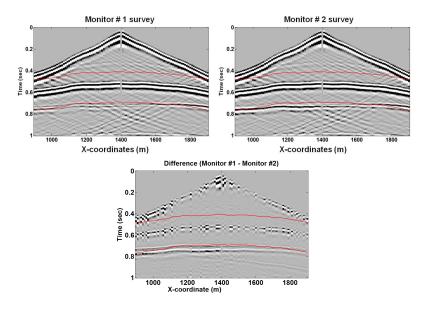
$$NRMS = 2 \frac{RMS(a_t - b_t)}{RMS(a_t) + RMS(b_t)}.$$
(8)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

2D example 1: NRMS





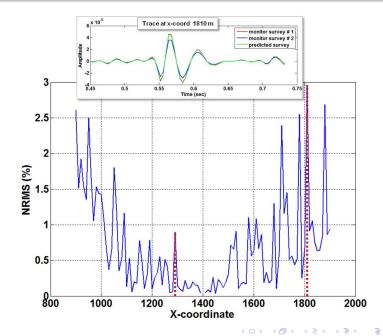


◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

2D example 2: NRMS



500

Conclusions

- We've deomonstrated the theory of surface-consistent matching filters
- It's analogous to surface-consistent deconvolution **except** we consider **two** data set
- Synthetic time-lapse data sets: baseline, first monitor survey, second monitor survey
- Constructed the 4-component surface-consistent matching filters
- Applied the matching filters to two time-lapse examples
- Balanced amplitudes, equalized phase and bandwidth and compensated for time-shifts

イロト イヨト イヨト イヨト

The authors thank the following:

- The sponsors CREWES.
- CREWES staff and students, in particular Faranak Mahmoudian, Hassan Khaniani, Marcus Wilson, A.Naser Yousef Zadeh, Rolf Maier, Kevin Hall, and David Henley.
- Saudi Aramco for sponsoring Mahdi Almutlaq's study program.

イロト イポト イヨト イヨト

> Thank you ... Questions?

< □ > < □ > < □ > < □ > < □ > .

æ