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Introduction
 Poroelastic Medium

 Biot (1962): anelastic effects from the relative movement of the 
fluid.

 Biot’s theory: Important in oil and gas exploration, CO2 storage 
monitoring and hydrogeology.

 The Theory predicts two compressional waves and one shear 
wave.

(Russell et al., 2003)

3



Biot’s Theory(1962)
Assumptions :
 Elastic rock frame
 Connected pores
 Seismic wavelength     average pore size
 Small deformations
 Statistically isotropic medium
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 Stress-Strain Relation For Porous Media (Biot, 1962)

Fluid Pressure

Solid Stress

Coupling Modulus

Lame Parameters 
of the Saturated 
Rock.
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 Equations of motion for a statistically isotropic porous media 
saturated with viscous fluid:

MobilityFluid Displacement 
Relative to the Solid

Effective                      
Fluid Density Density of Saturated 

Rock

Fluid Density 
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Substituting                 and                  in the equations of motion 
and taking derivatives with respect to time from both sides of 
the stress-strain relationship we have:

and
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 2D case:

(1)

(3)
(4)

(5)

(6)

(7)

(8)

(2)
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Staggered-Grid Finite Difference(Levander, 
1988)
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Numerical Examples

 CO2 storage in Basal Cambrian 
Sands or BCS, which is a saline 
aquifer within Western Canadian 
Sedimentary Basin (WCSB)

 Data from well SCL-8-19-59-20W4

Single layer model based on QUEST Project

Quest
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Single Layer Model
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Gassmann Fluid Substitution 

BCS: 40% CO2
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 Fourth order in space and second order in time.
 The stability condition is the same as the one in the elastic 

case (Zhu:1991)

 The size of the model was 1500 m  by 1500 m 
 Explosive source: Ricker wavelet with dominant frequency 

50 Hz
 Source location : 
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 Vertical Particle Velocity of the Solid
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 Comparison with elastic algorithm
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Two-Layered Model
Top Layer                  Bottom Layer
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 Vertical Particle Velocity of the Solid
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Conclusion and Future Goals
 The Poroelastic algorithm Generates slow compressional

wave as predicted by Biot’s theory.
 At a poroelastic boundary the slow P-wave is converted to a

fast P-wave.
 The algorithm handles layered models and should be

examined for more complex models.
 The algorithm could be used for inversion to obtain porous

media properties that are ignored in elastic algorithms.
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 Fluid Pressure
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