

INVERSION OF SEISMIC DATA FOR ASSESSING FLUID REPLACEMENT IN THE NISKU FORMATION

PATRICIA GAVOTTI DON C. LAWTON

TABLE OF CONTENTS

- Objective
- Introduction
 - Project Pioneer data
 - Seismic processing overview
- Well log analysis
- Model-based inversion
- 2D seismic modelling
- Conclusions
- Acknowledgements

OBJECTIVE

- Evaluate the seismic response of the Nisku Formation in terms of its impedance variations with the surrounding formations
 - Compare the effect of using a dataset processed with two different approaches in an inversion study.
 - Monitor the effect of injecting CO2 in the Nisku Formation in terms of impedance changes using time-lapse numerical data

INTRODUCTION

- ~70 km west of Edmonton
- WASP

INTRODUCTION

Project Pioneer:

- Capture 1 MT/yr of CO2 at Keephills 3
- Use for EOR
- Inject into the Devonian saline aquifer, Nisku Formation
- Data provided by, CNRL, TransAlta & Schlumberger

Project Pioneer was cancelled in 2012

PROCESSING OVERVIEW

Seismic data processed ^{Time} (ms) under two approaches:

Conventional sequence from previous processing (surface wave attenuation & spiking deconvolution)

 ~9-14 Hz around the target zone

Special sequence (radial filter & Gabor decon)

- Better attenuation of low-freq. noise
- Signal ~5-9 Hz

WELL LOG ANALYSIS

Properties	Nisku	Calmar
ф	7.4 %	1.8 %
Permeability	315 md	0.83

- Horizon: 2nd White Speckled Shale
- Frequency cut-off: ~8-13 Hz

Initial Model case b):

- Horizon: 2nd White Speckled Shale
- Frequency cut-off: ~6-10 Hz

Inversion analysis case a): Inversion analysis case b):

Analysis window: 800 – 1500 ms indicated by yellow bars

Inversion case a):

- More continuous layers without much lateral variation
- Lower Zp values in 1500 the Nisku Fm.

Inversion case b):

- Thicker layers with some lateral variation
- Higher resolution in the Colorado Group

0.0

Zp (e06)

position

Inversion case b):

- More low-frequency content present in the seismic data
- Same vertical position

2D geological model created based on well log information and parameters from the Highvale line

	B (1				
Block	Depth (Km)	Vp (m/s)	Vs (m/s)	ρ (g/cc)	Formation
1	0.0	1900	1590	2.3	Shallow surface
2	0.1	1920	1600	2.3	Shallow - Lea Park
3	0.773	3000	1610	2.35	Lea Park
4	1.27	3300	1620	2.5	Viking
5	1.533	3700	2000	2.68	Banff
6	1.605	5410	3029	2.61	Exshaw
7	1.613	3795	2195	2.74	Wabamun
8	1.764	6000	3300	2.67	Graminia
9	1.769	5889	3328	2.78	Blueridge
10	1.787	5890	3350	2.77	Calmar
11	1.793	5500	3150	2.8	Nisku
12	1.897	6200	3300	2.77	Ireton
13	2.0	5000	2660	2.8	Duvernay/Leduc
14	2.14	4000	2100	2.77	Basal Cooking Lake

PARAMETERS	HIGHVALE		
Source type	Dynamite (1Kg/18m)		
Source interval	80 m		
Receiver interval	20 m		
Sample rate	2 ms		
Record length	3 sec.		
Number of channels	201		
Lines length	17.38 Km		

- CO2 volume estimation based on the static approach (Frailey, 2009)
- A disk was used to estimate the CO2 volume and radius of extension (Vera, 2012)

 Gassmann fluid substitution was used to calculate the changes in Vp, Vs and density (Alshuhail, 2011).

• Edges and top of the plume is clearly identifiable with a plume width of 500 m.

2D SEISMIC MODELLING Inversion analysis – Baseline stack

- Synthetic P-impedance log created from the geologic model
- Wavelet extracted from wellseismic tie process
- Correlation > 99%

- **Monitor Inversion:** Exact impedance
 - values as the P-
 - impedance log except in the
 - ^{8.6} injection zone and below it.

- P-impedance decreased ~7%
- Shape of the plume is even more clear than before. Top, base and sides are easily identifiable with a plume width of 500 m.
- Fewer artifacts are still seen at the edges of the plume and below it.

CONCLUSIONS

Seismic processing:

- New processing recovered low-frequency signal useful in inversion studies.
- Seismic Inversion:
 - Broadband result was obtained with new processing
 - More lateral variation related with low-frequency signal
 - Previous processing showed a cleaner and more continuous section.

2D seismic modelling:

- Time delay (1.81 ms), amplitude change (~30%) and Impedance change (-7%) in the post-injection seismic section.
- The shape of the CO2 plume is more easily identifiable by impedance changes (width = 500 m).

ACKNOWLEDGEMENTS

- TransAlta Corporation, CNRL and Schlumberger
- Helen Isaac, Dave Henley, Raul Cova and Bob Loblaw
- Shahin Moradi
- Brian Russell
- ProMAX, NORSAR-2D and Hampson-Russell Software
- Carbon Management Canada (CMC) and CREWES sponsors and members.