

On the Role of Deconvolution Imaging Condition in Full Waveform Inversion

Wenyong Pan, Gary F. Margrave, Kristopher A. Innanen

CREWES, University of Calgary

- □ CREWES is moving towards pratical application of FWI in recent years (Margrave et al. 2013).
- **Full Waveform Inversion (FWI) and Standard Inversion Methodology** (SM) (Margrave et al. 2012).
- □ Inverse Hessian and Illumination Compensation.
- □ Gradient with Illumination Compensation, Deconvolution Imaging Condition and Reflectivity.
- **Impedance Perturbation Estimation**
- **Well Control**
- □ Iterative Modeling and Migration and Inversion Method (Margrave et al. 2012).

- □ CREWES is moving towards pratical application of FWI in recent years (Margrave et al. 2013).
- □ Full Waveform Inversion (FWI) and Standard Inversion Methodology (SM) (Margrave et al. 2012).
- □ Inverse Hessian and Illumination Compensation.
- □ Gradient with Illumination Compensation, Deconvolution Imaging Condition and Reflectivity.
- **Impedance Perturbation Estimation**
- **Well Control**
- □ Iterative Modeling and Migration and Inversion Method (Margrave et al. 2012).

- □ CREWES is moving towards pratical application of FWI in recent years (Margrave et al. 2013).
- **Given Standard Inversion (FWI) and Standard Inversion Methodology (SM) (Margrave et al. 2012).**
- **Inverse Hessian and Illumination Compensation.**
- □ Gradient with Illumination Compensation, Deconvolution Imaging Condition and Reflectivity.
- Impedance Perturbation Estimation
- **Well Control**
- □ Iterative Modeling and Migration and Inversion Method (Margrave et al. 2012).

- □ CREWES is moving towards pratical application of FWI in recent years (Margrave et al. 2013).
- **Full Waveform Inversion (FWI) and Standard Inversion Methodology (SM) (Margrave et al. 2012).**
- □ Inverse Hessian and Illumination Compensation.
- Gradient with Illumination Compensation, Deconvolution Imaging Condition and Reflectivity.

Impedance Perturbation Estimation

Well Control

□ Iterative Modeling and Migration and Inversion Method (Margrave et al. 2012).

- □ CREWES is moving towards pratical application of FWI in recent years (Margrave et al. 2013).
- **Full Waveform Inversion (FWI) and Standard Inversion Methodology** (SM) (Margrave et al. 2012).
- □ Inverse Hessian and Illumination Compensation.
- □ Gradient with Illumination Compensation, Deconvolution Imaging Condition and Reflectivity.
- Impedance Perturbation Estimation

Well Control

□ Iterative Modeling and Migration and Inversion Method (Margrave et al. 2012).

- □ CREWES is moving towards pratical application of FWI in recent years (Margrave et al. 2013).
- **Full Waveform Inversion (FWI) and Standard Inversion Methodology** (SM) (Margrave et al. 2012).
- □ Inverse Hessian and Illumination Compensation.
- □ Gradient with Illumination Compensation, Deconvolution Imaging Condition and Reflectivity.
- **Impedance Perturbation Estimation**
- **Well Control**
- Iterative Modeling Migration and Inversion Method (Margrave et al. 2012).

Deconvolution Imaging Condition

$$I(\mathbf{r}) = \int_{\omega}^{\omega_N} d\omega \frac{U(\mathbf{r},\omega)}{D(\mathbf{r},\omega)}$$

The reflectivity is given as the ratio of the upgoing wavefields and downgoing wavefields.

$$I(\mathbf{r}) = \int_{\omega}^{\omega_N} d\omega \frac{D^*(\mathbf{r}, \omega) U(\mathbf{r}, \omega)}{D^*(\mathbf{r}, \omega) D(\mathbf{r}, \omega) + \lambda A_{max}}$$

The complex conjugate of the downgoing wavefields D^* is always multiplied by in the denominator and numerator to make the imaging condition stable.

Cross-correlation Imaging Condition

$$I(\mathbf{r}) \simeq \frac{1}{A_D^2} \int_{\omega}^{\omega_N} d\omega D^*(\mathbf{r}, \omega) U(\mathbf{r}, \omega)$$
$$\simeq \int_{\omega}^{\omega_N} d\omega D^*(\mathbf{r}, \omega) U(\mathbf{r}, \omega)$$

The auto-correlation of the downgoing wavefields can be taken out from the integration.

$$I_{cross}(\mathbf{r}) = \sum_{\mathbf{r}_s} \int d\omega \Re\{\omega^2 \mathcal{F}_s(\omega) G(\mathbf{r}, \mathbf{r}_s, \omega) G(\mathbf{r}_g, \mathbf{r}, \omega) \psi^*(\omega)\}$$

Crosscorrelation imaging condition

$$I_{dec}(\mathbf{r}) = \frac{\sum_{\mathbf{r}_s} \int d\omega \Re\{\omega^2 \mathcal{F}_s(\omega) G(\mathbf{r}, \mathbf{r}_s, \omega) G(\mathbf{r}_g, \mathbf{r}, \omega) \psi^*(\omega)\}}{\sum_{\mathbf{r}_s} \int d\omega \Re\{\omega^4 | \mathcal{F}_s(\omega)|^2 | G(\mathbf{r}, \mathbf{r}_s, \omega)|^2 \psi^*(\omega)\} + \lambda A_{max}}$$

Deconvolution imaging condition

Analytic Solution of the Imaging Conditions

Numerical Example

Numerical Example

Numerical Example

$$\phi = \frac{1}{2} \|\mathbf{d} - \mathbf{B}\mathbf{u}\|_2$$

Misfit function in matrix form

$$g = \frac{\partial \phi}{\partial m} = \mathbf{J}^T \Delta d^*$$

Gradient

$$H_a = \mathbf{J}^T \mathbf{J}$$

Approximate Hessian

$$\delta m = -(\mathbf{J}^T \mathbf{J} + \lambda I)^{-1} (\mathbf{J}^T \Delta d^*) \simeq \delta m = -\frac{\mathbf{J}^T \Delta d^*}{\mathbf{J}^T \mathbf{J} + \lambda I}$$

Model Perturbation

$$\mathbf{B}(\mathbf{r},\omega)\mathbf{u}(\mathbf{r},\omega) = f(\mathbf{r},\omega)$$

Wave Equation

$$\delta m = -(\mathbf{J}^T \mathbf{J} + \lambda I)^{-1} (\mathbf{J}^T \Delta d^*) \simeq \delta m = -\frac{\mathbf{J}^T \Delta d^*}{\mathbf{J}^T \mathbf{J} + \lambda I}$$

Model Perturbation

$$\mathbf{B}\frac{\partial \mathbf{u}}{\partial m} = -\frac{\partial \mathbf{B}}{\partial m}\mathbf{u} \right\} \text{ SECONDARY SOURCE}$$

Scattered Source

$$\delta m = -(\mathbf{J}^T \mathbf{J} + \lambda I)^{-1} (\mathbf{J}^T \Delta d^*) \simeq \delta m = -\frac{\mathbf{J}^T \Delta d^*}{\mathbf{J}^T \mathbf{J} + \lambda I}$$

Model Perturbation

$$\mathbf{J} = \frac{\partial \mathbf{u}}{\partial m} = -\mathbf{B}^{-1} \frac{\partial \mathbf{B}}{\partial m} \mathbf{u}$$
Jacobian Matrix

$$g = -\sum_{\omega, \mathbf{r}_s} \omega^2 \Re \left\{ \mathbf{u}^T \otimes \left(\mathbf{B}^{-1} \right)^T \Delta d^* \right\}$$

Gradient

$$H_a = \left(\mathbf{B}^{-1} \frac{\partial \mathbf{B}}{\partial m} \mathbf{u}\right)^* \left(\mathbf{B}^{-1} \frac{\partial \mathbf{B}}{\partial m} \mathbf{u}\right)$$

Approximate Hessian

$$g = -\sum_{\omega, \mathbf{r}_s} \omega^2 \Re \left\{ \mathbf{u}^T \otimes \left(\mathbf{B}^{-1} \right)^T \Delta d^* \right\}$$

Gradient

$$H_{a} = \omega^{4} \Re \left(\mathbf{u}^{*} \mathbf{u} \left(\mathbf{B}^{-1} \right)^{*} \left(\mathbf{B}^{-1} \right) \right)$$

Approximate Hessian

$$g = -\sum_{\omega, \mathbf{r}_s} \omega^2 \Re \left\{ \mathbf{u}^T \otimes \left(\mathbf{B}^{-1} \right)^T \Delta d^* \right\}$$

Gradient

$$H_{a} = \omega^{4} \Re \left(\mathbf{u}^{*} \mathbf{u} \left(\mathbf{B}^{-1} \right)^{*} \left(\mathbf{B}^{-1} \right) \right)$$

Approximate Hessian

$$H_{pseudo} = f_{virtual}^* f_{virtual} = \left(\frac{\partial \mathbf{B}}{\partial m} \mathbf{u}\right)^* \left(\frac{\partial \mathbf{B}}{\partial m} \mathbf{u}\right) = \omega^4 \Re \left(\mathbf{u}^* \mathbf{u}\right)$$

Pseudo Hessian

Model Perturbation By Gary et.al (2011)

DECONVOLUTION IMAGING CONDITION

Model Perturbation

$$g = -\sum_{\omega, \mathbf{r}_s} \omega^2 \Re \left\{ A \frac{e^{ik_0 \tilde{\mathbf{r}}_s}}{4\pi \tilde{\mathbf{r}}_s} \otimes AR \frac{e^{-ik_0 \tilde{\mathbf{r}}_s}}{4\pi \tilde{\mathbf{r}}_s} \right\} = -\sum_{\omega, \mathbf{r}_s} \omega^2 \Re \left\{ \frac{1}{\tilde{\mathbf{r}}_s^2} \frac{A^2}{16\pi^2} R \right\}$$
Analytic Expression of the Gradient
ENERGY DECAY

$$H_{pseudo} = \Re \left\{ \omega^4 \mathbf{u}^*(\mathbf{r}'_s, \omega) \mathbf{u}(\mathbf{r}''_s, \omega) \right\} = \Re \left\{ \omega^4 \left(A \frac{e^{-i\kappa_0 \mathbf{r}_s}}{4\pi \tilde{\mathbf{r}}'_s} \right) \left(A \frac{e^{i\kappa_0 \mathbf{r}_s}}{4\pi \tilde{\mathbf{r}}''_s} \right) \right\}$$

Analytic Expression of Pseudo Hessian

$$g = -\sum_{\omega, \mathbf{r}_s} \omega^2 \Re \left\{ A \frac{e^{ik_0 \tilde{\mathbf{r}}_s}}{4\pi \tilde{\mathbf{r}}_s} \otimes AR \frac{e^{-ik_0 \tilde{\mathbf{r}}_s}}{4\pi \tilde{\mathbf{r}}_s} \right\} = -\sum_{\omega, \mathbf{r}_s} \omega^2 \Re \left\{ \frac{1}{\tilde{\mathbf{r}}_s^2} \frac{A^2}{16\pi^2} R \right\}$$
Analytic Expression of the Gradient
ENERGY DECAY
(11) $\Omega \left(A + \hat{\mathbf{r}}_s \right) = \Omega \left(A + \hat{\mathbf{r}}_s \right) \left(A + \hat{\mathbf{r}}_s \right) = \Omega \left(A + \hat{\mathbf{r}}_s \right) \left(A + \hat{\mathbf{r}}_s \right) = \Omega \left(A + \hat{\mathbf{r}}_s \right) \left(A + \hat{\mathbf{r}}_s \right) = \Omega \left(A + \hat{\mathbf{r}}_s \right) \left(A + \hat{\mathbf{r}}_s \right) = \Omega \left(A + \hat{\mathbf{r}}_s \right) \left(A + \hat{\mathbf{r}}_s \right) = \Omega \left(A + \hat{\mathbf{r}}_s \right) \left(A + \hat{\mathbf{r}}_s \right) = \Omega \left(A + \hat{\mathbf{r}}_s \right) \left(A + \hat{\mathbf{r}}_s \right) = \Omega \left(A + \hat{\mathbf{r}}_s \right) \left(A + \hat{\mathbf{r}}_s \right) = \Omega \left(A + \hat{\mathbf{r}}_s \right) \left(A + \hat{\mathbf{r}}_s \right) = \Omega \left(A + \hat{\mathbf{r}}_s \right) \left(A + \hat{\mathbf{r}}_s \right) = \Omega \left(A + \hat{\mathbf{r}}_s \right) \left(A + \hat{\mathbf{r}}_s \right) \left(A + \hat{\mathbf{r}}_s \right) = \Omega \left(A + \hat{\mathbf{r}}_s \right) \right)$

$$\mathbf{Diag}\left(H_{pseudo}\right) = \Re\left\{\omega^{4}\mathbf{u}^{*}(\mathbf{r}_{s},\omega)\mathbf{u}(\mathbf{r}_{s},\omega)\right\} = \Re\left\{\omega^{4}\left(A\frac{e^{-i\kappa_{0}\mathbf{r}_{s}}}{4\pi\tilde{\mathbf{r}}_{s}}\right)\left(A\frac{e^{i\kappa_{0}\mathbf{r}_{s}}}{4\pi\tilde{\mathbf{r}}_{s}}\right)\right\}$$

Analytic Expression of Diagonal Pseudo Hessian

$$\delta m \simeq \Re \left\{ \frac{-\sum_{\omega, \mathbf{r}_s} \omega^2 \frac{1}{\tilde{\mathbf{r}}_s^2} \frac{A^2}{16\pi^2} R}{\omega^4 \frac{A^2}{16\pi^2 \tilde{\mathbf{r}}_s^2}} \right\} = -\Re \left\{ \sum_{\omega} \omega^2 R \right\}$$

Analytic Expression of Model Perturbation **REFLECTIVITY**

$$R_n = \frac{I_{n+1} - I_n}{I_{n+1} + I_n} = \frac{\Delta I}{I_{n+1} + I_n}$$

Recall the relationship between the reflectivity and impedance at normal incidence

$$\Delta I \simeq 2I_n R_n$$

Impedance Perturbation or Impedance Imaging Condition

$$I_{k+1} = I_k + \Delta I_k = I_k + 2I_k R_k$$

Impedance can be updated iteratively

The slant gradient with different ray parameters are responsible to update the subsurface layers with different steep angles

Phase Encoded Source Wavefields and Plane-wave Source Wavefields Reproduced from Shan et al. (2006)

$$\tilde{g}(p_i^g,\omega) = -\int d\omega \Re \left\{ \omega^2 f_s(\omega) G(\mathbf{r},\mathbf{r}_s,\omega) G(\mathbf{r}_g,\mathbf{r},\omega) e^{i\omega p_i^g(x_s-x_g)} \delta P^* \right\}$$

Phase Encoded Gradient

$$\tilde{H}_{pseudo}\left(\mathbf{p}^{H},\omega\right) = \sum_{\mathbf{r}_{s}} \sum_{i=1}^{N_{p}^{H}} \int d\omega \Re \left\{ \omega^{4} G(\mathbf{r}'',\mathbf{r}_{s}',\omega) G^{*}(\mathbf{r}',\mathbf{r}_{s},\omega) e^{i\omega(p_{i}^{H}+\varepsilon\Delta p)(x_{s}'-x_{s})} \right\}$$

Phase Encoded Pseudo-Hessian

$$\tilde{g}(p_i^g,\omega) = -\int d\omega \Re \left\{ \omega^2 f_s(\omega) G(\mathbf{r},\mathbf{r}_s,\omega) G(\mathbf{r}_g,\mathbf{r},\omega) e^{i\omega p_i^g(x_s-x_g)} \delta P^* \right\}$$

Phase Encoded Gradient

$$\mathbf{Diag}\left(\tilde{H}_{pseudo}\left(\mathbf{p}^{H},\omega\right)\right) = \sum_{\mathbf{r}_{s}}\sum_{i=1}^{N_{p}^{H}}\int d\omega\Re\left\{\omega^{4}G(\mathbf{r},\mathbf{r}_{s}',\omega)G^{*}(\mathbf{r},\mathbf{r}_{s},\omega)e^{i\omega(p_{i}^{H}+\varepsilon\Delta p)(x_{s}'-x_{s})}\right\}$$

Phase Encoded Source Illumination or Phase Encoded Diagonal Pseudo-Hessian

$$\tilde{R} = \Re \left\{ \frac{\tilde{g}\left(p_{i}^{g}, \omega\right)}{\mathbf{Diag}\left(\tilde{H}_{pseudo}\left(\mathbf{p}^{H}, \omega\right)\right) / N_{p}^{H} + \lambda A_{max}} \right\}$$

Reflectivity Approximation Estimation or Phase Encoded Deconvolution Imaging Condition

$$\Delta I_k = 2I_k \tilde{R}_k$$

Impedance Perturbation Estimation

$$\tilde{R} = \Re \left\{ \frac{\tilde{g}\left(p_{i}^{g}, \omega\right)}{\mathbf{Diag}\left(\tilde{H}_{pseudo}\left(\mathbf{p}^{H}, \omega\right)\right) / N_{p}^{H} + \lambda A_{max}} \right\}$$

Reflectivity Approximation Estimation or Phase Encoded Deconvolution Imaging Condition

$$I_{k+1} = I_k + \Delta I_k = I_k + \mu_k \left(2I_k \tilde{R}_k \right)$$

Iterative Impedance Update

Iterative Modeling Migration and Inversion (IMMI)

As proposed by Gary et.al (2012), the estimation of the reflectivity using deconvolution imaging condition enables us to combine FWI with SM, which forms the *Iterative Modeling Migration and Inversion* (IMMI) method.

Table 1. Pseudo Code of IMMI Method

BEGIN $\leftarrow I_0$, initial model; **WHILE** $\epsilon \leq \epsilon_{min}$ or $k \leq k_{max}$ $\begin{array}{l}
\textbf{Modeling} \\
\textbf{Modeling} \\
\textbf{Modeling} \\
\begin{array}{l}
1. Identify the ray parameter <math>p_{i,k}^g \text{ for constructing the phase encoded gradient} \\
2. Identify the frequency band <math>f^k = f_0 \rightarrow f_{max}, f_{interval}, \text{ every } n \text{ iterations} \\
3. Generate the data residual <math>\delta P$ and apply low-pass filtering $\delta \tilde{P} = \textbf{low}_\textbf{pass} \left(\delta P, f^k\right) \\
4. Create the phase encoded gradient <math>\tilde{g}_k \left(p_{i,k}^g, \omega\right) \\
5. \textbf{FOR } i = 1 \text{ to } N_p^H, \text{ every } 1 \text{ or } m \text{ iterations} \\
\end{array}$ $\begin{array}{l}
\textbf{Migration} \\
\textbf{Migra$ $\begin{array}{l} \textbf{Inversion} \\ \textbf{S} \quad \textbf{END FOR} \\ \textbf{S} \quad \textbf{END FOR} \\ \textbf{S} \quad \textbf{Calculate the step length } \mu_k \text{ using the line search method} \\ \textbf{S} \quad \textbf{Calculate the step length } \mu_k \text{ using the line search method} \\ \textbf{S} \quad \textbf{Calculate the impedance:} \\ & I_{k+1} = I_k + 2\mu_k I_k \Re \left\{ \left(\textbf{Diag} \left(\tilde{H}_{pseudo}^k \left(\textbf{p}^H, \omega \right) \right) / N_p^H + \lambda \tilde{A}_{max} \right)^{-1} \tilde{g}_k \left(p_{i,k}^g, \omega \right) \right\} \\ \textbf{10. Calculate the relative least-squares error:} \\ & \epsilon = \frac{\|I_{k+1} - I_{true}\|_2}{\|I_{true}\|_2} \\ \textbf{END WHUE} \\ \end{array}$ END FOR END WHILE

Numerical Experiment

Numerical Experiment

Gradient with Single Shot

Gradient Comparison

(a) True Reflectivity

Normalized Amplitude

Gradient Comparison

(b) Cross-correlation Based Gradient

Normalized Amplitude

Gradient Comparison

Normalized Amplitude

Well Control

Well Control

Well Control

Estimated Reflectivity

Deconvolution Based Gradient after Well Control

True Impedance Perturbation

Impedance Perturbation Estimation

Inverted Impedance after 1st Iteration

Well Data Comparison

Phase Encoded Pseudo-Hessian

Diagonal Phase Encoded Hessian

Phase Encoded Pseudo-Hessian

Diagonal Phase Encoded Hessian

Slant Gradient

Slant Gradient with Ray Parameter p=-0.2s/km

Slant Gradient

Slant Gradient with Ray Parameter p=0.2s/km

Slant Gradient

Slant Gradient with Ray Parameter p=-0.3s/km

Phase Encoded Gradient

Phase Encoded Gradient without Precondition

Phase Encoded Gradient

Phase Encoded Gradient with Precondition

The Bold-Red line, Black line and Bold-Blue line indicate the True Velocity Model, Initial Velocity Model and Inverted Velocity Model respectively.

Conclusions

- □ The gradient with illumination compensation can compensate the geometrical spreading effects, recover the amplitudes of the deep reflectors and can estimate the reflectivity directly.
- **The phase encoding method can reduce the computational cost effectively.**
- □ The IMMI method, which combines FWI and traditional impedance inversion method, is efficient and stable to reconstruct the velocity model.

Further Research Plan

- □ Apply the strategies proposed in this research on the Hussar practical datasets.
- **Incorporate AVO information in practical FWI (Innanen 2013).**

CREWES

Acknowledgements

- □ All CREWES Sponsors
- Kris Innanen and Gary Margrave
- □ Yu Zhang (CGGveritas, Now ConocoPhillips)
- Danping, Wenyuan, Vladimir Zubov
- □ Joe Wong, Raul, Babatunde
- All the other researchers in CREWES

Thank You !

