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 Examining the Possibility of Using Full Waveform Inversion Method for 
Fracture Properties Estimation.

 The Limitations of Current Methods for Fracture Characterization.
 Amplitude Method (AVO or AVAZ): Assuming Horizontal Interface
 Travel Time Method: Appropriate for Transmission Survey

 The Benefits of Full Waveform Inversion Method.
 Full Wavefields Information (Amplitude, travel time and etc.) for Fracture Properties 

Estimation
 Overcome the Limitations of Conventional Methods

 Estimating Elastic Stiffness Coefficients in Fractured Media (Equivalent 
HTI Media) Using Multi-parameter Gauss-Newton FWI

Motivation



 Principle of Full Waveform Inversion and Inversion Sensitivity Kernel 
 Mono-parameter FWI     Multi-parameter FWI

 Cross-talk and Parameterization Problems
 Scattering Patterns and Inversion Sensitivity Analysis 

 3D Fŕࢋchet Derivative or Scattering Patterns for General Anisotropic 
Media: Analytic Results
 Examining a HTI Case

 Multi-parameter Update and Multi-parameter Hessian with Gauss-Newton 
Framework
 Suppressing Cross-talk Using Multi-parameter Hessian

 Numerical Examples
 Inversion Sensitivity: Analytic vs. Numerical Results (2D)
 A 2D HTI Case

Outline



Review of Full Waveform Inversion and Inversion 
Sensitivity Kernel



 Least-squares wave equation inversion:

 Model Update:



 Least-squares wave equation inversion:

 Gradient:

Fŕࢋchet Derivative



 Fŕࢋchet derivative or Inversion Sensitivity Kernel:

 Approximate Hessian:
Model Perturbation

Fŕࢋchet Derivative

Fŕࢋchet Derivative



Mono-parameter FWI   Multi-parameter FWI



 Mono-parameter FWI:

 Mono parameter Vp.
 Cycle-skipping problem (Lack of low frequency, Inaccurate

initial model and etc. )
 …………..



 Multi-parameter FWI:

 Cross-talk and parameterization:
 The perturbations of different parameters have coupled

effects on the seismic response.
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 Multi-parameter FWI:

 Cross-talk and parameterization:
 Which parameterization is more suitable for full

waveform inversion ?
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 Multi-parameter FWI:

 Cross-talk and parameterization:
 How to use multi-offset and multi-azimuth data for

effective inversion?

u uࢾ

Inversion Sensitivity Kernel



Inversion Sensitivity Analysis for multi-parameter FWI: 
Cross-talk and Scattering Patterns



Scattering Patterns for acoustic FWI (Operto et al. , 2013)
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3D Fr chet Derivative and Scattering Patterns for 
General Anisotropic Media: Analytic Results



 Equation of Motion:

 The Solution of Wavefields:



 Equation of Motion:

 Perturbations of Model Parameters:



 Equation of Motion:

 Perturbation of Wavefields:



 The Equation Describes the Propagation of Scattered Wavefields 
(Born Approximation):

Scattered Wavefields

Scattered Source



 The Equation Describes the Propagation of Scattered Wavefields 
(Born Approximation):

Scattered Wavefields

Scattered Source The Solution of Scattered Wavefields:



 The Fŕࢋchet Derivative for General Anisotropic Media:

Scattering Pattern
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 Scattering Pattern for HTI Media:

 Moment Tensor Source for HTI media:
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x-z Plane y-z Plane x-y Plane

3D Scattering Patterns Due to Perturbation of c33.
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Multi-parameter Update and Multi-parameter Hessian 
within Gauss-Newton Framework



Multi-parameter Update 2D HTI Case

Multi-parameter Update and Multi-parameter Hessian within 
Gauss-Newton Framework



Exact Gradient without Cross-talk

Multi-parameter Update and Multi-parameter Hessian within 
Gauss-Newton Framework



Multi-parameter Update and Multi-parameter Hessian within 
Gauss-Newton Framework

Gradient Suffers from Cross-talk

Cross-talk



Multi-parameter Approximate Hessian Suppresses Cross-talk

Multi-parameter Update and Multi-parameter Hessian within 
Gauss-Newton Framework



Multi-parameter Update and Multi-parameter Hessian within 
Gauss-Newton Framework

Schematic Diagram of the Multi-parameter Hessian 

M*N

M*N



Multi-parameter Update and Multi-parameter Hessian within 
Gauss-Newton Framework

Schematic Diagram of the Multi-parameter Hessian 

4*N

4*N



Multi-parameter Update and Multi-parameter Hessian within 
Gauss-Newton Framework

Schematic Diagram of the Multi-parameter Hessian 



The Diagonal Blocks  

Multi-parameter Update and Multi-parameter Hessian within 
Gauss-Newton Framework



Multi-parameter Update and Multi-parameter Hessian within 
Gauss-Newton Framework

Schematic Diagram of the Diagonal Blocks



Off-diagonal Blocks of the Multi-parameter Hessian Control Cross-talk 

Multi-parameter Update and Multi-parameter Hessian within 
Gauss-Newton Framework



Multi-parameter Update and Multi-parameter Hessian within 
Gauss-Newton Framework

Schematic Diagram of the Off-diagonal Blocks



The Parameter-type Approximation (Innanen, 2014)

Multi-parameter Update and Multi-parameter Hessian within 
Gauss-Newton Framework



Multi-parameter Update and Multi-parameter Hessian within 
Gauss-Newton Framework

Schematic Diagram of the Parameter-type Approximation



Numerical Experiments



1. Inversion Sensitivity Analysis: Analytic Results vs. Numerical 
Modelling Results
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2. Elastic Constants Estimation Using a 2D HTI Model
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Data residuals by different parameters
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Gradient with Multi-parameter Hessian Precondition
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Gradient with Multi-parameter Hessian Precondition
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Gradient Suffered from Cross-talk
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True Model Perturbation
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Gradient without Precondition
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Gradient with Parameter-type Hessian Precondition 
with Cross-talk
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Gradient with Approximate Hessian Precondition with 
Cross-talk
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Gradient with Approximate Hessian Precondition with 
Cross-talk (3 Sources)
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Estimated Model Perturbation with Approximate Hessian 
Precondition with Cross-talk (3 Sources and 3 Iterations)
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Conclusions:

 Elastic constants in fractured media can be estimated directly using FWI.
Multi-parameter FWI suffers from cross-talk.
 Inversion sensitivity analysis and scattering patterns control the cross-talk .
Multi-parameter Hessian can suppress cross-talk.
 Target-oriented Gauss-Newton multi-parameter FWI is appropriate

extension.
 Analysis for multi-component and multi-azimuth data (3D) is also needed.
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