New approaches to seismic monitoring at the Brooks Field Research Station

Don Lawton, Malcolm Bertram, Kevin Hall and Kevin Bertram

Exploration – finding and mapping new reservoirs

Eagle Butte impact crater – southern Alberta

Hanova, 2004

Data courtesy Encana

Monitoring – changes in reservoirs temporally and spatially

Sleipner

Chadwick et al., 2010

Monitoring – changes in amplitude and travel time

Goodway et al., 2012

Exploration and monitoring

Exploration (1975)

Monitoring (2015)

Monitoring applications for hydrocarbon assets

- Enhanced petroleum recovery
- Well and cap rock integrity
- Hydraulic fracturing (shale gas and tight oil)
- Steam chamber containment and conformance
- Fugitive methane emissions
- Secure carbon storage
- Acid gas disposal
- Produced water disposal
- Induced seismicity

Monitoring surveys and technologies

Geophysics

New Technologies

Integration

Surface seismic VSP

VSP D'Microseismic Fi

Cross-well

Electrical

Electromagnetic

Micro gravity

Density tomography

Magnetics

DAS

DTS

Fibre geochem

Tilt meters

DGPS

INSar

Nano gravity

Muon density tomography

Rock properties

Geology

Flow in porous media

Flow engineering

Geomechanics

Groundwater

Fugitive emissions

Tracers

Containment risk

Containment risk

Atter Celia et al., 2004

Seismic monitoring challenges

Verification of conformance and containment

- Thin reservoirs (saturation-thickness)
- Resolution, tuning
- High rock matrix K and µ values
- Cap rock integrity how
- Fluid migration through legacy wells
- Impacts on groundwater
- Pressure vs. gas saturation

Seismic monitoring advances

- Multicomponent seismic volumes
- Sensors close to reservoir
- Robust and slim sensors
- Repeatable seismic source
- Continuous seismic recording (passive)
- Continuous seismic recording (active source)
- Rapid response to trigger event
- Temporally unaliased geological processes (high repeat rate)

CaMI Field Research Station

Land leased from Cenovus Energy

Sa Majesté la Reine du chef du Canada, Ressources naturelles Canada.

CaMI Field Research Station

Field monitoring layout at the Field Research Station

CaMI.FRS multicomponent seismic volumes

PP PS

CaMI.FRS PP-PS correlation

Helen Isaac

Borehole sensors

3C geophone

Tom Daley Barry Freifeld LBNL

DAS versus geophones

Combined DTS, Heater, DAS Hybrid copper/fiber-optic cable

SIX 20 AWG CONDUCTORS & FOUR FIBER FIMT STAINLESS STEEL TUBE

Components

- 4: 6 x 20 AWG 7/28 Tin Coated Copper; O.D.: 0.96 mm (0.037") Nominal
- B: Colored T-01 (FEP); O.D.: 1.73 mm (0.068") Nominal;
- C: 316L FIMT containing gel and 2 x 50/125 & 2 x SM HT Acrylate Coated Fibers; O.D.; 1.8 mm
- D: PTFE Tape (0.003" Thickness) Wrap over Cabled Core
- E: White P-06; O.D.: 7.75 mm (0.305") Nominal
- F: 316L Stainless Steel Tube; Wall Thickness: 0.89 mm (0.035"); O.D.: 9.53 mm (0.375") Nominal

Optical fibre developments

fibre elongation at location z and time t, u(z,t), is measured over a reference distance dz

time difference (t, t + dt) of elongation spatial difference (dz)

$$\left[u\left(z+\frac{dz}{2},t+dt\right)-u\left(z-\frac{dz}{2},t+dt\right)\right]-\left[u\left(z+\frac{dz}{2},t\right)-u\left(z-\frac{dz}{2},t\right)\right]$$

Courtesy Tom Daley LBNL

Optical fibre developments

Standard single mode fibre

Helical wound fibre

Barry Freifeld LBNL

Australian Otway Project images courtesy of LBNL, Curtin University and the CO2CRC

ACROSS continuous seismic source

Courtesy Mamoru Takanashi JOGMEC

LBNL continuous source: 0 – 80 Hz

10 T-force rotary source sitting on a 1 m x 2 m x 2 m deep foundation

$$F = Mr\omega^2$$

Barry Freifeld LBNL Reference geophone amplitude during a 0-80 Hz sweep, 1 minute up, 1 minute down

Australian Otway Project images courtesy of LBNL, Curtin University and the CO2CRC

Field monitoring layout at the Field Research Station

Conclusions

- We need a multiphysics approach to invert for more then velocity and density (or moduli).
- We need snapshots often enough to monitor all of the changes in the reservoir and cap rock
- Ideally we would like semi-continuous acquisition, which will require permanent sources and receivers for active-source methods
- We need permanent, robust, small sensors that preserve integrity of the geology
- How do we deal with 'big data'?
- Our plan is to evaluate these approaches at the FRS

Acknowledgements

CREWES sponsors
CREWES staff and students
CMC Research Institutes Inc.
Colleagues from LBNL

