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Motivation – computing on a grid
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Motivation – big grids, and big operators
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50x50 grid 
results in

2500x2500 matrices



Motivation

• Finite difference methods are an effective, efficient method for 
solving many differential equations.

• PDEs in 2D and 3D lead to large, sparse matrices.

• Implicit methods require the solution of these large matrices.

• We want faster solution methods, built on the grid geometry.

• Speed of order O(#grid points), per time step.

• Grid algebra is linear algebra, directly represented on a 2D or 3D grid.
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Matrix Ax = b. As an equation. As a graph. As a reduced graph.
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Laplace operator on 4x4 grid
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Laplace operator, as a 16x16 matrix
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We hide the zeros for simplicity. 
This is a large, structured matrix. 



A grid operator, “lower triangular” form
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Note the arrows all go 
down and to the right. 



Solving triangular form, by back substitution
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Start at 
upper left corner. 

Etc.



Solved grid system
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Linear algebra on a grid

• Nodes on grid index the rows and columns of a matrix

• Weights on arrows are matrix coefficients

• All arrows going towards one node is equivalent to a matrix row

• Matrix row operations correspond to operations on arrows

• Multiply row by a constant = multiply all arrow weights, pointing to 
one node

• Adding one row to another = add weights on arrows pointing to one 
node, to weights on arrows pointing to another node

• Exchanging rows = exchange arrows pointing to two nodes
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Linear algebra on a grid

• Composing operators = chasing arrows, tails to heads, taking sum and 
products of weights

• Factoring operators = finding arrows, to give a composition

• Operators of special form are easy to invert, solve
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Factoring the Laplacian
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This factor has only 
right and up arrows. 

This factor has only 
left and down arrows. 

Both are solvable by back substitution. 

Analytic form:

Discrete form:



Grid factoring, Cholesky factorization
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A better form: 
Cholesky factorization as bi-diagonal matrices in x, y directions. 



Coding example – explicit FD solution, grid algebra
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Coding example – implicit FD solution, grid algebra 
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Sanity check on implicit  – move out the x,y boundary
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Conclusions

• Large, sparse matrices are a challenge in FD implicit methods.

• Linear algebra can be done directly on grid representations.

• Efficient representation of operators in computer memory.

• Early tests indicate this works, and is fast, for numerical solution of 
the wave equation.
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Erroneous coding in paper (note 10^6 power)
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