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Motivation — - — - -

= All inversion algorithms require forward model.

= Distributed acoustic sensing could help remedy some of the current issues facing
FWI.
= | ow cost monitoring
= Has potential to supply the lower frequencies crucial to FWI.
" |tis hoped that improved spatial sampling of DAS fibres will also aid in FWI frameworks.

= A forward model will be required to optimize DAS fibre shapes for elastic wave
mode discrimination.

= Potential for synthetic modeling of time lapse seismic with DAS fibres
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Theoretical Basis for DAS

— Theoretical background — - — —

= When light interacts with matter, it scatters in a predictable manner dependent
on particle size, based on the scale factor:

_an
* =7

= In the case x K 1, light scatters according to Rayleigh scattering, and light is
backscattered with the same phase.

= DAS systems operate based on Rayleigh backscattered light.
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Theoretical Basis for DAS

— Theoretical background — - — —
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= Seismic strain causes stretching an squeezing of fibre, along its tangent, changing
the distance between Rayleigh scattering centers.

= This changes the optical path length of the light pulse, altering the light intensity
originating from a portion of the fibre.
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Cable-Fibre System

- — Geometric models — - _
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Cable geometry — Cable Axis

— Geometric models — - _

Let ¢ be a vector pointing from the origin to a point at
a distance s’ along the cable, such that,

Do)
—)

c(s) c(s") = [c1(s"), c2(s"), c3(s)]"

If we choose to instead parameterize the cable in
Cartesian coordinates then ¢ may take the form

c(x) = [x,c2(x), c3(0)]"
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Cable geometry — Arc length

— Geometric models — - _

The arc length is the sum of the length of each
derivative component along the cable,

s . \11/2
s'(x) = f dx' [dc(x ). dcc'l(xx’ )]

/N dx’'
0
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Cable geometry — Tangential Coordinate System

- — Geometric models — - _

We may now develop a coordinate system
that varies along the cable, where

i(s") =

describes the tangent of the cable at every
point.
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Fibre Geometry — Fibre position

— Geometric models — - _

It is important to keep track of the fibre positions, in
order to know where a particular measurement is
being made:

c1(sD|  |h(s)
f=c+h=|c;(s")|+ |h,(s)
c3(s")]  |hs(s)]

For the special case of a helically wound fibre, with
radius T and velocity v, then in the {t, i, b} frame,

we have
0

h = |rcos(s'/v)
7sin(s’/v) |
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Fibre Geometry — Fibre position

- — Geometric models — - _

Rotating the helix back into the Cartesian frame,
f=c+Rh

where R is rotation matrix taking the helix from the
frame {¢, b, 7} = {1, 2,3}
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Fibre Geometry — Arc length

— Geometric models —

Knowing the arc length of the total cable-fibre
system s is crucial to the model. Following the
previous formulaic development for the cable arc

length.
1/2

S

7,.2

1+—

S =
vZ

The following re-parameterization allows knowledge
of the fibre position as a function of total arc length,
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Fibre Geometry — Tangents

— Geometric models —

n(s)

b(s)

N

t(s)

Finally, the most important quantity in any DAS
geometric model, the fibre tangent is,

/f(S) — E

It is along these tangents that the cable-fibre system
senses strain.
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Velocity-stress finite difference

_ - — Elastic wave models — -

Velocity-stress finite difference simulations rely on computations of the particle velocity, and
stress to propagate the wavefield.

1. Elastodynamic equation of motion (EOM) 2. Hooke’s Law (stress-strain relation)
azui > aO'ij Ojj = Cijklekl
P ar2 fi=, . 0%, Ji
]:

3. Strain tensor

_ 1 auk + aul
Gkl = 2 axl axk
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Velocity-stress finite difference in one dimension

_ - — Elastic wave models — -

Consider a p-wave propagating in the vertical direction, then only the vertical component of
displacement u,, and the normal stress g,, are nonzero.

azuz 00,, 0,z = (A+2u)e,,

P9tz ~ "oz

Invoking the formula for the strain tensor, taking the derivative of the stress-strain relation with

respect to time, and letting the particle velocity be 1 = %.
du do do ou
P Z _ zZZ ZZ  _ (ﬂ, n 2,“) Z
dt 0z dt 0z
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Velocity-stress finite difference in one dimension

— Elastic wave models — -

t . " P./.X\.Q n+1
t l/ >\l//' X\l n

The velocity-stress finite difference formulation is
unique because it solves the system of equations on a
staggered grid, improving accuracy and stability,

0, 00y,

P ot ~ oz
da,, ou,
— (142
5 =~ Atam—o
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Velocity-stress finite difference in three dimensions

_ - — Elastic wave models — -

In the more general, two and three dimensional cases, the number of nonzero
components grows,

Velocity Stress
azui _ aO'ij aO'ij . 10 C 6uk N Oul
Pate = Liox; ot 20t| U\ ax, " ax,
J
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Velocity-stress finite difference in two dimensions

— Elastic wave models —
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Velocity-stress finite difference in three dimensions

— Elastic wave models —

Velocity ~—

Stress <> .

) = Oxxr Oyy) Oz A+ 21,7
.\ O =1,,p ™ = Oxz U
\/ .:il,y,px:gyz"u

® - T:LZ,,D x = ny,/,t
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The strain rate tensor

_ — — Bridging the gap —

DAS fibres measure strain along the axial tangent. Our first goal is then to quantify the strain
at every point, from values computed during the velocity-stress propagation.

de 1/0%u 0%u 1 /0w, o0u
kl:< k l):(k_l_ l)

ot 2 axlat axkat 2 6xl 6xk
1 2Uy x Uy T Uyx  Uxz T Uz
e =—|Uyxy +1Uyx 2Uy,y Uyz t Uzy
21 . : : : 71
_ux,z + uz,x uy,z T+ uz,y uz,z
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Projection onto the fibre

— Bridging the gap —

We must now rotate the strain rate in Cartesian coordinates, onto the fibre tangent,

. _ . . _ . T
€tnp = |ént ©nn  Cnb _RexyzR

The only measured component of fibre strain that is

with R being the rotation matrix
nonzero is é;; resulting in,

T4 82 13 o
R=n-1 ni-2 7n-3 ett:[RexyzR ]11
b-1 b-2 b-3
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Vertical velocity on 1-C geophones
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Strain tensor components required for DAS
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Response of a straight fibre

- - - — Examples

Trace number

Time (ms)

Modified from Mateeva et al., 2014

L':}‘ CRE WES WWWw.crewes.org CRSNG FACULTY OF SCIENCE Y

Department of Geoscience




Response of a straight fibre

Time (ms)
Time [sec]

Modified from Mateeva et al., 2014
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Response of a helical fibre

— — — — Examples
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Response of a helical fibre
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Response of a two-helix fibre
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With a successful coupling of the DAS geometric model, and a full 3D elastic wave model, we
are in a good position to further investigate the applications of DAS which may include but are

not limited to:

1. Discrimination of elastic wave modes & identification of microseismic events in a
propagating wavefield

2. Wave-based processing and imaging of DAS data

Full Waveform Inversion in a Distributed Acoustic Sensing framework

4. Acquisition design and appraisal: shape parameters, gauge length, channel
separation and their influence on RTM, FWI, impedance inversion, etc .
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Questions?
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