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Overview

* Multiple: Seismic energy that has been reflected more than once (SEG wiki)
* long-path multiple: arrives as a distinct event

e short-path multiple: arrives so soon after the primary that it merely adds tail to the
primary (i.e., changes the waveshape).

* For this project the focus is internal long-path multiple attenuation using the
Inverse scattering series
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* Goal of internal multiple prediction:
e Correctly predict the amplitudes of all internal multiples without predicting
primaries
* |[n practice:

e Optimal approximation to amplitudes and minimize artifacts of prediction

e Prediction then input into adaptive subtraction
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Internal Multiple Prediction

Primaries Internal Multiples (first order)
P1 P2 P3 M212  M213 M312 M313  M323
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Lower-higher-lower (L-H-L) Criteria

In

Artifact

e Display schematic with
reflectivities

* Integration limits control

event combinations
e Ensure lower-higher-lower
criteria is met (L-H-L)

e This limits the prediction
to internal multiples
without any additional
artifacts
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Epsilon (&)

Artifact
In Larger ¢ Out In  Smaller & OQOut

€ = Search limiting parameter

 |f output domain varies n W
from input

e Difficult to vary epsilon
e Original algorithm (w)

* |f output domain is the v v
same as input W

e Can use nonstationary >
epsilon

e Purpose of (t, x)
algorithm derivation
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1D Time Domain Internal Multiple Prediction

Time Domain Algorithm
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Integration Limits and epsilon
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* |Internal multiples are predicted for every time
step

e Epsilon can vary for every time step
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1.5D Time-Offset Internal Multiple Prediction
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e Computing convolutions in both time
and space

e This is completed through a 2D
convolution

 The mask matrix which is set by epsilon
can vary in both time and space

Bs(x, t) = de’jdt’s(x —x',t' — t)jdx”

t—e
X ] dt”S(x, _ xll, t, _ t”)S(X”, t”)
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1.5D time offset Domain Prediction

P1 P2 M212
\/ \ / \ V= 1500 m/s
v \ / \ V=3000 m/s
V= 1500 m/s

e Shot record created
using finite difference
modeling in MATLAB
with CREWES Toolbox

z=0m

z =400m

z =550m

e Created Shot record with significant first order multiple

* Will demonstrate prediction with different epsilon values

e Due to the time-offset domain epsilon can be nonstationary
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Stationary epsilon

epsilon =30 epsilon =70 Shot Record
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Spatially Variant epsilon
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Nonstationary epsilon epsilon Shot Record
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Spatially Variant epsilon with Taper

Nonstationary epsilon epsilon Shot Record
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Nonstationary epsilon

Nonstationary epsilon epsilon Shot Record
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Conclusions and future work

Conclusions:
e Highly flexible formulation which allows for the determination of an epsilon schedule

* In 1.5D time space domain was able to reduce artifacts through nonstationary epsilon

Future Work:

e Further tests of offset-time domain varying the seismic model parameters
 Reduce computational expense

e Goal of project is to implement the method on land seismic data
 How to calculate epsilon schedule?
e How to manage irregular spatial sampling?

 What stage of seismic processing workflow to apply multiple attenuation?
e Amplitude recovery/gain, statics, deconvolution, ...
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