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 The least-mean-square (LMS) algorithm is an adaptive filter developed 
by Widrow and Hoff (1960) for electrical engineering applications.

• It is used in applications like echo cancellation on long distance calls, blood 
pressure regulation, and noise-cancelling headphones.
 Along with the perceptron learning rule (Rosenblatt, 1962) the LMS 

algorithm also lead to the development of both linear and nonlinear 
neural networks (Rumelhart et al., 1986, Hagan et al., 1996).
 Thus, an understanding of the LMS algorithm is the first step in 

understanding neural networks and machine learning.
 In this talk, I will use examples from Widrow and Stearns (1985) and 

geophysics to explain the LMS algorithm, and also compare it to the 
least-squares, gradient descent and conjugate gradient methods.
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Introduction
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The basic problem

 Consider two shifted sinusoids input into separate recording channels, then weighted 
and summed so that the output produces an error εk with a desired sinusoid.

 The objective is to change the weights to reduce the error (ideally to 0), which in this 
case has the analytical solution:

xk1 = sin(2πk/N)

Σ Σ

dk = 2cos(2πk/N)
w1

w2
εk+

+ +
−

xk2 = sin(2π(k-n)/N)
yk

from Widrow and Stearns (1985) 
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Recording all the samples

 In geophysical measurements we record all the data first as a complete time 
series, rather than recording it one sample at a time, giving in general:
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 Setting N = 6 and n = 1 in our example gives (with computed weights):

























−
−
−

=

























−

−

−

























−
−

=

1
1
2
2

1
2

866.0
0
866.0
866.0
0
866

309.2

866.0
866.0
0
866.0
866.0
0

155.1y



5

The squared error

 Squaring the error using vector notation, we get:
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 In this equation, the matrix R = XTX is the cross-correlation of the input 
vectors and the vector PT = dTX is the cross-correlation of the desired 
output with the input (note that often these are both divided by N).
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 We can call also define the quadratic error (QE):
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The quadratic error surface

A 3D view of the quadratic error surface (left) and the contoured surface 
(right), where the correct weights are found at the minimum error.
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The gradient

 The gradient of the mean-square-error can be obtained by differentiating 
the error with respect to the weights, or:

∑
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 Widrow and Stearns(1985) include a factor of 2 in the gradient, which I 
have dropped (as do most books on optimization, such as Gill et al., 1981).

 The obvious solution is to set the gradient to zero and invert:
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 But for large geophysical and neural network problems, this is not an 
option due to the size of the datasets, and we need to find other methods.
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Steepest descent

 One approach is Newton’s method, but it requires the full inverse of R.

 A less costly approach is called steepest descent:

 That is, we approach the solution in a series of steps controlled by the 
step size αi, each time updating the gradient and the step size.

 The most crucial choice in gradient descent is therefore the value of αi.

size. step the  where,1 =∇−=+ iiiii WW αα

 All search methods for finding the best solution start with an initial guess 
and then iterate towards the answer, using the gradient in some way:

MiWWW iii ,,1,0  where,1 =∆+=+
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Finding the step size

 It can be shown the value of the step size should be somewhere 
between 0 and 2 divided by the largest eigenvalue of the matrix R, or:

 The eigenvalues of R are λmax = 4.5 and λmin = 1.5, so 2/λmax = 0.444.

 The optimum value of αi at each step is found by line minimization to be:
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 Note that this means that α will vary for each iteration. 
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The steepest descent path

 This figure shows the path taken by 
the steepest descent algorithm using 
the optimum step size given in the 
last slide, starting at an initial guess 
of W0

T = [0,0].

 Note that each step is orthogonal to 
the previous step.

 The first step is the largest and is 
computed as:
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The conjugate gradient (CG) method

 In the conjugate gradient (CG) method (Hestenes and Steifel, 1952), 
conjugate directions pi are found in which pi

TRpj = 0. 
 The conjugate gradient algorithm can be written: 

 To show that this works on our dataset, note that the calculations for 
the first two conjugate gradient directions give:
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The conjugate gradient method
 The conjugate gradient algorithm is 

shown as the red curve on this plot.
 It always converges to the correct answer 

in the same number of iterations as the 
number of unknown weights.

 The steepest descent path is shown in 
blue on this plot, where the first step is 
equal to that of CG.

 Note that the second step of CG gives the 
correct weights:
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The Least-Mean-Square Algorithm

 Recall that the error at each input sample is given by:

[ ]2211 kkkkkkkkkkk wxwxdWXdyd +−=−=−=ε

 Also recall the definition of the gradient, and note that for our two 
weight example we can write:
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The Least-Mean-Square Algorithm

 This suggests that we update the weights after each sample, as follows:

 This is called the Least-Mean-Square, or LMS, algorithm.

 Since the full correlation matrix is not available, the step size α cannot be 
calculated for each step, so is set to a reasonable value for the complete set 
of iterations.

 The block diagram for the LMS solution is shown in the next slide, and the 
solution to our problem is shown in the following slide with α set to 0.333.

T
kkkkkk XWWW αεα 21 +=∇−=+
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The LMS algrorithm

 In the LMS algorithm the error is fed back into the algorithm after each 
sample is input and the weights are adjusted.

xk1 = sin(2πk/N)

Σ Σ

dk = 2cos(2πk/N)
w1

w2

εk

+

+ +
−

xk2 = sin(2π(k-n)/N)

yk

The LMS Algorithm
from Widrow and Stearns (1985) 
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The LMS path

 The path taken by the LMS 
algorithm is shown in red.

 The conjugate gradient path is 
shown in blue.

 Note that the LMS path is chaotic 
at first but soon takes orthogonal 
steps like steepest descent.
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LMS prediction

 The red curve shows the desired 
sinusoid and the blue curve 
shows the LMS prediction after 
every iteration.

 Note that it fits almost perfectly 
after 19 iterations.

 This is because we have a 
repetitive signal that we can 
keep feeding into LMS.

 Let us now see how the 
algorithm would work on 
geophysical problems.
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First seismic example: deconvolution
 Let us now consider deconvolution (Claerbout, 

1976, Robinson and Treitel, 2000) using the 
wavelet, reflectivity and seismic as shown: 

 We can write this as follows, where s = the seismic, 
W = the wavelet matrix and r = the reflectivity: *
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Least-squares solution and quadratic error plot

 As expected, the least-squares solution 
gives us the correct result as shown 
below, plotted as the red circle on the 
quadratic error surface on the right:
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 As a starting guess for the gradient 
search methods, we will use rT= [-1,-1], 
shown as the blue square on the 
quadratic error plot.
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Gradient search solutions

The three gradient search solutions are shown above, where both steepest 
descent and conjugate gradient have converged to the correct answer but LMS 
has not converged due to the small number of samples in this example.  

Steepest descent solution. Conjugate gradient solution. Least-mean-square solution.
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Second seismic example: attribute prediction
 We now consider a second 

seismic example in which we 
predict a target porosity log 
(shown in red) using a weighted 
set of seismic attributes (shown as 
the black traces).

 In this case we have seven 
normalized attributes (zero mean, 
unit standard deviation), so the 
equation is:

Seismic Attributes

Target 
LogAttribute.   where,
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Second seismic example: attribute prediction
 This figure shows the least-squares 

weights (blue) and LMS weights 
(red), where they have been 
normalized to the first weight (the 
first two weight values are shown).

 Since LMS was sensitive to the 
initial guess, the guess was 
initialized using random numbers 
between -0.5 and +0.5.

 Also key was the step size α and it 
was adjusted until the LMS error 
was optimized.

Least-squares weights

LMS weights

0.7343

0.1871
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Second seismic example: attribute prediction

 Here is the convergence of steepest 
descent (blue) and conjugate gradient 
(red) for the first two weights, using a 
starting guess where all weights = -0.5.

 The actual values below show that CG 
took 7 iterations:

Weight 1 Weight 2
Iteration 1:

Iteration 7:
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Second seismic example: attribute prediction

 Here is the predicted target log 
for both algorithms, where red 
shows the true log and blue 
shows the predicted log.

 As shown here, the least-squares 
solution gives a better fit.

 Depending on the initial guess, 
the LMS answer can get better 
or worse than this!

 This is probably due to the fact 
there is no exact answer.

Least-squares 
prediction LMS prediction
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Second seismic example: attribute prediction

 However, a useful diagnostic that 
we can derive from the LMS 
algorithm is the relative error 
after each iteration.

 This gives us an indication of how 
well each newly derived set of 
weights predicts the target log.

 As expected, when we hit the 
very high frequency values 
between samples 45 and 55, the 
prediction is poor. 

poor 
prediction



 The least-mean-square (LMS) algorithm is an adaptive filter developed by 
Widrow and Hoff (1960) for electrical engineering applications.
 In this talk, I used examples from Widrow and Stearns (1985) and geophysics 

to explain the LMS algorithm, and also compare it to the least-squares, 
gradient descent and conjugate gradient methods.
 For the example using continuous sinusoids, LMS converged to a solution 

equivalent to the least-squares and gradient methods.
 But for our geophysical applications, LMS was inferior to least-squares and 

gradient methods, due to lack of iterations (decon) and noise (regression).
 However, the LMS algorithm is the method used in neural networks and 

machine learning, where the data arrives sample by sample.
 Thus, an understanding of LMS is crucial to understanding neural networks.
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Conclusions



Acknowledgements

• I wish to thank the CREWES sponsors and my colleagues at 
Hampson-Russell, CGG, and CREWES.



References

28

Claerbout, J, 1976, Fundamentals of Geophysical Data Processing: McGraw Hill, Inc.
Gill, P.E., Murray, W., and Wright, M.H.,1981, Practical Optimization: Academic Press, New York.
Hagan, M.T., Demuth, H.B., and Beale, M., 1996, Neural Network Design: PWS, Boston.

Hestenes, M.R., and Stiefel, E., 1952, Methods of conjugate gradients for solving linear systems: Journal 
of Research of the National Bureau of Standards, 29, 409-439.
Robinson, E.A., and Treitel, S., 2000, Geophysical Signal Analysis: SEG, Tulsa.
Rosenblatt, M., 1958, The perceptron: A probabilistic model for information storage and organization in 
the brain: Psychological Review, 65, 386-408.

Rummelhart, D.E., Hinton, G.E., and Williams, R.J., 1986, Learning representations of back-propagation 
errors: Nature, 323, 533-536.
Widrow, B., and Hoff, M.E., 1960, Adaptive switching circuits: IRE WESCON Conv. Rec., pt. 4, p 96-104.
Widrow, B., and Stearns, S., 1985, Adaptive Signal Processing: Prentice-Hall, New York.


	The Least-Mean-Square (LMS) algorithm and its geophysical applications
	Introduction
	The basic problem
	Recording all the samples
	The squared error
	The quadratic error surface
	The gradient
	Steepest descent
	Finding the step size
	The steepest descent path
	The conjugate gradient (CG) method
	The conjugate gradient method
	The Least-Mean-Square Algorithm
	The Least-Mean-Square Algorithm
	The LMS algrorithm
	The LMS path
	LMS prediction
	First seismic example: deconvolution
	Least-squares solution and quadratic error plot
	Gradient search solutions
	Second seismic example: attribute prediction
	Second seismic example: attribute prediction
	Second seismic example: attribute prediction
	Second seismic example: attribute prediction
	Second seismic example: attribute prediction
	Conclusions
	Acknowledgements
	References

