
www.crewes.org

A deep learning perspective of the forward and 
inverse problems in exploration geophysics

Jian Sun*, Zhan Niu, Kris Innanen, Junxiao Li*, Daniel Trad

Nov 30, 2018
Banff, AB



2

Outline

 Motivation



3

Outline

 Motivation
 The forward problem: a deep learning perspective
 Forward modeling of wave propagation
 Recurrent Neural Network (RNN)



4

Outline

 Motivation
 The forward problem: a deep learning perspective
 Forward modeling of wave propagation
 Recurrent Neural Network (RNN)

 The inverse problem: a deep learning perspective
 The gradient derivation in a RNN framework
 Connections with FWI?



5

Outline

 Motivation
 The forward problem: a deep learning perspective
 Forward modeling of wave propagation
 Recurrent Neural Network (RNN)

 The inverse problem: a deep learning perspective
 The gradient derivation in a RNN framework
 Connections with FWI?

 Numerical analysis & tuning of hyperparameters
 Best learning rate selection for gradient-based algorithms
 Comparisons (GD, Momentum, Adagrad, RMSprop, Adam, CG, L-BFGS)



6

 Motivation
 The forward problem: a deep learning perspective
 Forward modeling of wave propagation
 Recurrent Neural Network (RNN)

 The inverse problem: a deep learning perspective
 The gradient derivation in a RNN framework
 Connections with FWI?

 Numerical analysis & tuning of hyperparameters
 Best learning rate selection for gradient-based algorithms
 Comparisons (GD, Momentum, Adagrad, RMSprop, Adam, CG, L-BFGS)

 Synthetic test on Marmousi

Outline



7

 Motivation
 The forward problem: a deep learning perspective
 Forward modeling of wave propagation
 Recurrent Neural Network (RNN)

 The inverse problem: a deep learning perspective
 The gradient derivation in a RNN framework
 Connections with FWI?

 Numerical analysis & tuning of hyperparameters
 Best learning rate selection for gradient-based algorithms
 Comparisons (GD, Momentum, Adagrad, RMSprop, Adam, CG, L-BFGS)

 Synthetic test on Marmousi
 Conclusions & Future works

Outline



Motivation

8(Picture from internet)



Motivation

9

 Deep learning (DL): 
 Widely used: speech recognition, computer vision, auto-driving, machine 

translation, medical imaging, etc.
 Fast: only trained once.
✗ Large and well-labelled training datasets.
✗ Not theory-guided (data-determined).

 Full waveform inversion (FWI):
 Theory-guided: small datasets.
 Full wavefield information used.
✗ Computationally expensive.
✗ Cycle-skipping.
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The forward problem: a deep learning perspective

 The second-order finite-difference:

FD Operator 𝒖𝒖𝒕𝒕+∆𝒕𝒕

𝒖𝒖𝒕𝒕

𝒖𝒖𝒕𝒕−∆𝒕𝒕
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 The second-order finite-difference:
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Neural Networks (NN)

(Fjodor van Veen, 2017)
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Recurrent Neural Network (RNN)
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The inverse problem: a deep learning perspective

 The gradient derivation in a RNN framework

 Objective function:

 Gradient:
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The inverse problem: a deep learning perspective

 The gradient derivation in a RNN framework

 Gradient at time-step t:



18

The inverse problem: a deep learning perspective

 Connections with FWI?  Gradient at time-step t:

RNN

FWI

 Which means, training this self-designed RNN is
approximately equivalent to the FWI process. In
other words, FWI is also a special case of machine
learning task.
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Numerical analysis & tuning of hyperparameters

 Find the best learning rate ranges for gradient-based algorithms
including GD, Momentum, Adagrad, RMSprop, Adam

 Several inter-comparisons
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1D numerical example
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Gradient descent

𝛼𝛼 ∈ (0,1]
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Momentum

𝛼𝛼 ∈ (0,1]
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Adaptive gradient (Adagrad)

𝛼𝛼 ∈ (10,100)
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RMSprop

𝛼𝛼 ∈ (1,10)
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Adaptive moment (Adam)

𝛼𝛼 ∈ (10,100)
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Adaptive moment (Adam)

𝛼𝛼 ∈ (10,100)
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Comparisons of gradient-based algorithms
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Comparison of Adam, CG, L-BFGS
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Synthetic test on Marmousi

 Marmousi: 11 shots (12Hz)
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Non-linear CG
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L-BFGS
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Adam (𝛼𝛼=40)
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Comparison 
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Comparison: loss
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Conclusions & Future works

 Conclusions:
 We illustrated a self-designed RNN framework for forward and inverse 

seismic modelling.
 Proved that FWI is a special case of a machine learning process.
 Best learning rate ranges of gradient-based algorithms were analyzed 

and investigated for velocity model building.
 The efficiency of gradient-based and non-linear optimization 

algorithms are compared and discussed.

 Future works:
 A theory-guided neural network.
 A physical-teaching training process.
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Comments & Questions ?
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Comparison: v-model
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Comparison: v-profiles
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