

# RTM of a distributed acoustic sensing VSP at the CaMI Field Research Station, Newell County, Alberta, Canada

Jorge E. Monsegny\*, Daniel Trad and Don C. Lawton

Banff, December 10, 2019



Motivation



VSP-CDP transform is a single-channel process.

Only reflections from horizontal and near-horizontal interfaces are correctly handled.

Although CaMI-FRS site has horizontal interfaces, we want to be able to handle more complex structures.



- 1. Finite difference scheme.
- 2. RTM Imaging condition.
- 3. Transformation between fibre response and geophone response.
- 4. Synthetic modelling and migration experiment.
- 5. Real data migration.

#### Reverse time migration (RTM)



#### Reverse time migration (RTM)



#### Reverse time migration (RTM)









#### P pressure

vz is vertical particle-velocity.vx is horizontal particle-velocity.

 $\lambda$  Lamé parameter

j

- <mark>ρ</mark> density
- s source term

 $i + \frac{1}{2}$ 

 $v_x, \lambda$ 

#### 2. RTM normalized imaging condition



3. Daley strain rate to vertical particle-velocity transformation

#### Strain rate is the usual DAS measurement:

$$f = \frac{\partial \epsilon_z}{\partial t}$$

**Daley:** 
$$v_z(z) = -c(z) \int f(z) dt$$
,

c(z) is apparent wave velocity measured in the well. c(z)  $\approx$  3500m/s using the source closest to the well.

#### 3. Bóna strain rate to vertical particle-velocity transformation



(Bona et Al., 2017) 11

# **DAS VSP acquisition**

|        |                                                       | ¬                                                     |
|--------|-------------------------------------------------------|-------------------------------------------------------|
| N<br>↑ | $\star^{21148}$<br>$\star^{21146}$<br>$\star^{21144}$ | $N \xrightarrow{21148} VSP well 21106 \qquad S$       |
|        | $\star$ 21142                                         | I                                                     |
|        | <b>★</b> 21139                                        | ∎ 84m ¬ 100m                                          |
|        | <b>★</b> 21136                                        |                                                       |
|        | <b>★</b> 21134                                        |                                                       |
|        | VSP well $\mathbf{\overleftarrow{5}}^{21132}$         | <sup>191m</sup> DAS segment<br>Every 0.25m            |
|        | ★21127                                                | Decimated every 1m                                    |
|        | $\star^{21124}$                                       | Geophone segment                                      |
|        | ★21121                                                | Elvery on                                             |
|        | <b>★</b> 21118                                        | -306m -317m                                           |
|        | $\star^{21115}$                                       |                                                       |
|        | ★21112<br>★21109                                      | 17 shot gathers                                       |
|        | ★21103<br>★21107                                      |                                                       |
|        | <b>→ 2</b> 1106                                       | Source was IVI EnviroVibe with linear sweep 10-150Hz. |
| 10     | 00m                                                   | 338m DAS fibre and 24 3-C geophones in the well.      |





Upgoing DAS

- Geometry and first break picking.
- Wavefield separation.
- Gain for spherical spreading and transmission loss.
- Deconvolution of upgoing wavefield.

## Geophone VSP data



Upgoing geophone

- Geometry and first break picking.
- Wavefield separation.
- Gain for spherical spreading and transmission loss.
- Deconvolution of upgoing wavefield.

(Gordon, 2019) 16





#### P-wave velocity and density model



 $\lambda = \rho V_p^2$ 

Density model





Modelled DAS









Modelled DAS







### 5. Real data RTM without Laplacian (NL)



5. Geophone RTM



Geophone with DAS source

### 5. Untransformed strain rate RTM



DAS

### 5. DAS RTM transformed with Daley technique



DAS Daley

### 5. Untransformed strain rate RTM



DAS

### 5. DAS RTM transformed with Bóna technique



DAS Bona



- The RTM of the walkaway VSP DAS data from the CaMI Field Research Station is possible with the current data quality.
- This RTM have similar quality than the RTM from geophone data so we hope it could be used to perform monitoring at this facility.
- There were no apparent differences between the three RTM approaches we tested but we think a more detailed analysis is still needed.
- The Laplacian operator, widely used to eliminate low frequency noise caused by the RTM algorithms, was not needed when real VSP data were migrated.



