

DATA DEBLENDING (in many flavours)

Daniel Trad

DATA DEBLENDING CREWES GROUP

Daniel Trad

Madagascar Package (this talk)

Amr Ibrahim

Kai Zhuang

Ziguang Su

Zhan Niu

Postdoc (real data)

PhD 3D deblending

PhD- Nodes

Theory Guided Machine Learning

Madagascar

- sfsynthfd (MPI) → Synthetic blended data
- sflsprtm (MPI) → LSRTM (blended-deblended)
- sfdeblending (MPI)→Deblending via Time Domain Radon
- sflsdeblending→LSDeblending via TD Radon.
- **sflskirchhoff** → Kirchhoff time migration

Seismic Unix (to be ported to Madagascar soon): suradonhybrid

sustolt

Available upon request and patience

The benefit and challenge of blended acquisitions

Blended acquisitions allow to increase the **illumination** for the same **shot density** by maintaining the **acquisition cost** reasonable

Processing of blended data is **challenging**, each trace contains information from different sources, each trace has many offsets and azimuths

CREWES data set acquired in 2018

Deblending Processing (Verschuur, 2011)

Pseudodeblending + noise attenuation

Multidimensional inversion of pseudo-deblended transform

Physical transformations

Pseudo-deblending with time dithering

Blended Data

Pseudo Deblended Data

Deblending by filtering in receiver gathers (Hres Radon Transform)

Lateral (m) 0 1000 2000 3000 4000 5000 6000 7000 Each gather is filtered (by HRT in this case)

original blended

- p = 2 Robust data fitting
- q = 1 Sparse transform

One third of receiver gathers filtered

$$J = \|\widetilde{\mathbf{D}} - \mathbf{L} \,\mathbf{m}\|_p^p + \mu \|\mathbf{m}\|_q^q$$

All receiver gathers filtered

Individual inversion on each rcvr gather

Increasing number of receiver gathers being filtered

Blended data fitted by simultaneous models. **Deblending occurs by** predicting blended shots from individual models

All receiver gathers filtered

Simultaneous inversion of all blended data

All receiver gathers deblended at once

original blended

- Least sq p = 2
- Sparse transform q = 1

$$J = \|\mathbf{b} - \Gamma L \mathbf{m}\|_{2}^{2} + \mu \|\mathbf{m}\|_{1}^{1},$$

Supershot modelled by sfsynthfd

Supershot #1

Shot after denosing (sfdeblending)

Shot # 1

Shot after LS inversion (sflsdeblending)

Shot # 1

Inversion in rcvr

Inversion in cmp

Predicted Blended data

Predicted deblended data

Radon

CMP

CREWES field record deblending without time dithering

CREWES field record deblending without time dithering

CREWES field record deblending without time dithering

Deblended shots with migration/demigration

Stolt Apex shifted Radon transform deblending (Trad, 2003, 2012)

Apex Shifted Radon Transform

Subtraction (no adaptive yet)

Conclusions

- Presented different deblending approaches:
 - LS denosing
 - LS inversion
 - LS migration
- OOP approach: different combinations of a few different classes (LEGO approach)
- Educational deblending package for deblending in multiple flavours
 - Python Madagascar scripts for dataflow
 - Madagascar API for I/O
 - C++ classes for components and programs

- CREWES sponsors
- CSEG
- Natural Science and Engineering Research Council of Canada (NSERC)
- Madagascar (S. Fomel)
- Kai Zhuang, Amr Ibrahim, Sam Gray

Compressive sensing or Compressed sampling

Adapted from Baraniuk, Romberg and Wakin 2008

x 🗲 unknown

$\mathbf{y} = \mathbf{\Phi} \mathbf{x},$ Sampling from regular to irregular sampling

 $\mathbf{x} = \mathbf{\Psi} \boldsymbol{\alpha}, \qquad \begin{array}{l} \text{Transformation to convert from spread out} \\ \text{data to dense coefficients} \end{array}$

minimize $\| \Psi^{\mathbf{H}}_{m} \mathbf{x} \|_{1}$ enforce sparseness in the transform coefficients

subject to $\|\mathbf{\Phi}\mathbf{x} - \mathbf{y}\|_2 \leq \sigma$

match the data where sampled

Modeling (inverse transform) $\mathbf{d} = \mathbf{L}\mathbf{m},$ data and model can be regular or irregular enforce sparseness in the transform coefficients minimize $\|\mathbf{m}\|_1$ match the data where sampled subject to $\|\mathbf{Lm} - \mathbf{d}\|_2 \leq \sigma$ Alternative method for 11 inversion using 12 $\|\mathbf{W_m}\mathbf{m}\|_2 = \|\mathbf{m}\|_1$

L contains any kind of mapping (regular or irregular) The sampling operator is built in the design of the transform. Sparse transforms formulation as used in interpolation

 $\mathbf{d} = \mathbf{T} \mathbf{L} \mathbf{m} \qquad \qquad \text{Transformation and sampling operator}$

minimize $\|\mathbf{W_m L^H x}\|_2$ enforce sparseness in the transform coefficients

subject to $\|\mathbf{T}\mathbf{x} - \mathbf{d}\|_2 \le \sigma$ match the data where sampled

- $\mathbf{L}=oldsymbol{\Psi},$ Synthesis or modeling
- $\mathbf{T}=\mathbf{\Phi},$ Sampling, regular or irregular
- $\mathbf{m} = \alpha$, Model, sparse coefficients obtained through sparse inversion
- $\mathbf{d} = \mathbf{y}$ Data, sampled version of **x** or **Lm**

