Quantum computers in oil and gas exploration

Shahpoor Moradi

University of Calgary

Currently: Total & Institut de Recherche en Informatique Fondamentale (Paris, France)

> Daniel Trad and Kris Innanen University of Calgary

CREWES annual sponsor meeting, December 10th, 2019

Quantum computer works based on the laws of quantum mechanics such as superposition. For some specific problems it is **exponentially** faster than classical computers!!

"...Nature isn't classical, dammit, and if you want to make a simulation of nature, you'd better make it quantum mechanical..."

Simulation of Chemistry Richard Feynman (1982) Factoring large integers: given an n-digit integer N find prime numbers p and q such that $N = p \times q$.

Breaking encryption system that widely used for secure data transmission Peter Shor (1994)

Classical binary digit: exists in either of two possible states

Quantum binary digit (qubit) exists in superposition of two possible states

Axiom 2: measurement

When we measure the qubit it collapses to either 0 or 1

The probability of outcome 0 $\left|\sqrt{0.2}\right|^2 \times 100 = 20\%$

The probability of outcome 1 $\left|\sqrt{0.8}\right|^2 \times 100 = 80\%$

Adding one qubit doubles the power of computation!!!

NISQ era

Noisy Intermediate-Scale Quantum

(50- to few-hundred-qubits)

Near term applications (up to 5 years)

- Material design
- Oil and gas
- Carbon dioxide capture
- PDE's with machine leaning
- Drug discovery

Universal Quantum Computer (Fault tolerant quantum computation)

(Millions of qubits are required!!)

Long term applications (>10)

- Breaking crypto systems,
- PDEs, Regression, Machine Learning,
- Seismic modeling/inversion

Quantum algorithm for linear systems of equations (Harrow, 2009) A p = s A is $2^n \times 2^n$ Matrix

1. Initial state preparation

Load the 2^{*n*}-dimensional vector $\mathbf{s} = (s_1, \dots s_{2^n})$ into quantum computer's memory with \mathbf{n} qubits (axiom 1: superposition) $|\mathbf{s}\rangle = s_1 |000 \dots 0\rangle + s_2 |001 \dots 0\rangle + s_3 |001 \dots 0\rangle + \dots + s_{2^n} |111 \dots 111\rangle$

2. Matrix inversion: $|p\rangle = A^{-1}|s\rangle$ With O(n) numbers of operations (best classical algorithms solve this with O(2ⁿ) number of operations Exponential speed-up!!

3. Quantum Solution: solution is a quantum state $|p\rangle$ rather than $p = (p_1, ..., p_{2^n})$ (axiom 1: superposition)

 $|p\rangle = p_1|000...0\rangle + p_2|001...0\rangle + p_3|001...0\rangle + \cdots + p_{2^n}|111...111\rangle$ By measuring the quantum solution you get only one output (axiom 2: measurement)

How running time scales with different parameters?

Quantum Fourier Transform for seismic wave modeling

Don't ask for the model, use it!

Radar cross-section (**RCS**) is a measure of how detectable an object is by radar. A larger RCS indicates that an object is more easily detected (Wikipedia)

Classical

$$\sigma = \lim_{R \to \infty} 4\pi R^2 \frac{|E_s|^2}{|E_i|^2}$$

Quantum

$$\sigma = \lim_{R \to \infty} 4\pi R^2 \frac{\langle E_s | E_s \rangle}{\langle E_i | E_i \rangle}$$

ΓΎ1]

• E_s : scattered field strength at radar

• *E_i*: incident field strength at target

• *R*: distance between radar and target

Ket
$$|x\rangle = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Bra $\langle x| = \begin{bmatrix} x_1^* & x_2^* \end{bmatrix}$
Inner product

 $\langle x | x \rangle = |x_1|^2 + |x_2|^2$

We don't need to explore the components of the scattered field. We just need the scattered field strength! (Clader, 2013)

Don't ask for the model, use it!

 Q_c^{-1} : wave energy decreases with increasing travel distance due to scattering

- F_{PP} Scattered **P-wave** from the localized inhomogeneity for the incidence **P-wave**
- F_{PS} Scattered **P-wave** from the localized inhomogeneity for the incidence **S-wave**

$$Q_P^{-1} \sim \langle F_{PP} | F_{PP} \rangle + \langle F_{PS} | F_{PS} \rangle$$
$$Q_S^{-1} \sim \langle F_{SP} | F_{SP} \rangle + \langle F_{SS} | F_{SS} \rangle$$

- ✓ Quantum computation has the potential to simulate the seismic wave propagation faster than classical computers
- ✓ Limited access to the quantum computer output due to the nature of quantum information
- ✓ What features of the quantum 'solution' can be used in exploration seismology? Don't ask for the model, Use it!

Thank you

References

- Quantum algorithm for linear systems of equations AW Harrow, A Hassidim, S Lloyd - Physical review letters, 2009
- Preconditioned quantum linear system algorithm
 BD Clader, BC Jacobs, CR Sprouse Physical review letters, 2013
- One-step extrapolation method for reverse time migration Y Zhang, G Zhang - Geophysics, 2009
- Seismic wave propagation and scattering in the heterogeneous earth

H Sato, MC Fehler, 2012 Springer

 Quantum computing in geophysics: Algorithms, computational costs, and future applications

S Moradi, D Trad, KA Innanen

SEG Technical Program Expanded Abstracts 2018

 When quantum computers arrive on seismology's doorstep Shahpoor Moradi, Daniel Trad, and Kristopher A. Innanen Canadian Journal of Exploration Geophysics, vol. 44, no. 1 December 2019

- Exact representation of the molecular energy states of a single Caffeine molecule requires 10⁴⁸ bits!!!
- We can represent and store this much information with only 160 quantum bits!!

$$10^{48} \sim (10^3)^{16} \sim (2^{10})^{16} \sim 2^{160}$$

Penicillin $R \rightarrow N \rightarrow CH_{3}$ $O \rightarrow OH$ Classical bits 10⁸⁶ Quantum bits 280

Superconducting loops

A resistance-free current oscillates back and forth around a circuit loop. An injected microwave signal excites the current into superposition states.

Trapped ions

Electrically charged atoms, or ions, have quantum energies that depend on the location of electrons. Tuned lasers cool and trap the ions, and put them in superposition states.

Silicon quantum dots

These "artificial atoms" are made by adding an electron to a small piece of pure silicon. Microwaves control the electron's quantum state.

Topological qubits

Quasiparticles can be seen in the behavior of electrons channeled through semiconductor structures.Their braided paths can encode quantum information.

Diamond vacancies

A nitrogen atom and a vacancy add an electron to a diamond lattice. Its quantum spin state, along with those of nearby carbon nuclei, can be controlled with light.

Quantum Diamond Technologie

Modeling of seismic wave propagation

Output of quantum computer is not fully accessible!

Quantum computer process considerable amounts of information at a rate that cannot be matched in real time by any classical means, yet at the same time, most of this processed information is kept hidden from us!

Holevo's theorem

A quantum state with 2^N information content: at most $N = \log 2^N$ classical bits of information can be extracted

We can take advantages of the output if we are interested in some statistical features of it.