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Optimal transport problem

Definition (Optimal transport):
Given 𝑋 = 𝑌 = 𝑥%, 𝑥',⋯ , 𝑥) ⊂ ℝ,, positive measures 𝜇 = ∑/ 𝑓/𝛿23, 𝜈 = ∑/ 𝑔/𝛿23,
with 𝑓/ ≥ 0, 𝑔/ ≥ 0, and ∑/ 𝑓/ = ∑/ 𝑔/. Let cost matrix 𝐶 defined by 𝐶/9 = 𝑥/ − 𝑥9

'. 
The optimal transport problem between 𝑓 and 𝑔 is:

min
>∈ℝ@×@

< 𝑇, 𝐶 > = E
/,9F%

)

𝑇/9𝐶/9 , 𝑠. 𝑡. 𝑇1) = 𝑓, 𝑇>1) = 𝑔.

The optimal transport distance (2-Wasserstein distance) is given by:
𝑊'

' 𝑓, 𝑔 = min
>∈ℝ@×@

< 𝑇, 𝐶 > , 𝑠. 𝑡. 𝑇1) = 𝑓, 𝑇>1) = 𝑔.
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Optimal transport problem

Limitations:

1. Positive measure: 𝑓/ ≥ 0, 𝑔/ ≥ 0. For signals, normalization methods are needed.

2. Mass equality condition: ∑/ 𝑓/ = ∑/ 𝑔/. Unbalanced optimal transport.
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Unbalanced optimal transport problem

Definition (Unbalanced optimal transport):
Given cost matrix 𝐶, regularization coefficients 𝜀 and 𝜀M. The unbalanced optimal 
transport (UOT) distance between 𝑓 and 𝑔 is:

𝑊',N,NO
' 𝑓, 𝑔 = min

>∈ℝ@×@
< 𝑇, 𝐶 > −𝜀𝐸 𝑇 + 𝜀M𝐾𝐿 𝑇1) 𝑓 + 𝜀M𝐾𝐿 𝑇>1) 𝑔 . (1)

• Entropy regularization 𝐸 𝑇 = −∑/,9F%) 𝑇/9(log 𝑇/9 − 1) , increase the 
computational efficiency.

• Kullback-Leibler divergence 𝐾𝐿 𝑎 𝑏 = ∑/F%) 𝑎/ log [3
\3

− 1 as the mass 
balancing term.
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Unbalanced optimal transport problem

Theorem (Dual Problem):
Let matrix 𝐾 defined by 𝐾/9 = exp −

`3a
N . The dual problem of equation (1) is given 

by:
𝑊',N,NO

' 𝑓, 𝑔

= max
c,d∈ℝe@

E
/,9F%

)

−𝜀M𝑓/ exp −
𝜙/
𝜀M

− 𝜀M𝑔/ exp −
𝜓9
𝜀M

− 𝜀𝐾/9 exp
𝜙/
𝜀

exp
𝜓9
𝜀

− 1 . (2)

Strong duality holds. There exists a unique 𝑇∗ for the equation (1). And 𝜙∗, 𝜓∗
maximize (2) if and only if 

𝑇/9∗ = exp
𝜙/∗

𝜀
Kkl exp

𝜓9∗

𝜀
.
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Unbalanced optimal transport problem

Iterative scaling algorithm:
Starting with an initial value 𝑣 n = 1), compute iteratively with:

𝑢/
pq% =

𝑓/
∑9 𝐾/9𝑣9

p

NO
NOqN

, 𝑣9
(pq%) =

𝑔9
∑/ 𝐾/9𝑢/

pq%

NO
NOqN ,

until converge requirement is met. Suppose the algorithm converges with 𝑢∗, 𝑣∗, 
then 𝜙∗ = 𝜀 log 𝑢∗ , 𝜓∗ = 𝜀 log 𝑣∗. The transport matrix 𝑇∗ is:

𝑇/9∗ = 𝑢/∗𝐾/9𝑣9∗.

Moreover, the gradient of the unbalanced optimal transport distance is:

∇s3𝑊',N,NO
' 𝑓, 𝑔 = −𝜀M exp −

𝜙/∗

𝜀M
− 1 .
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Normalization methods

For discrete signal 𝑓 ∈ ℝ), define normalization function ℎ:ℝ) → ℝq).

Two normalization methods are studied:

• Linear normalization: ℎw/px[y,z 𝑓 = 𝑓 + 𝑘.

• Exponential normalization: ℎx2|,z 𝑓 = exp 𝑘𝑓 .

Here 𝑘 is the normalization coefficient.
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Formulation of full waveform inversion

Let the spatial domain Ω large enough. The full waveform inversion is a PDE 
constrained optimization problem. We use the acoustic wave equation with certain 
boundary condition as the constraint. Suppose there are 𝑁� sources and 𝑁y
receivers in the model.

min
�
𝐽 𝑐 = E

�F%

)�

E
yF%

)�

𝑊',N,NO
' ℎz 𝑑�,y , ℎz 𝑑�\�,�,y .

𝑠. 𝑡.
1

𝑐' 𝑥
𝜕'

𝜕𝑡'
𝑢� 𝑥, 𝑡 − Δ𝑢� 𝑥, 𝑡 = 𝑓� 𝑥, 𝑡 .

𝑑�,y 𝑡 = 𝑃y𝑢� 𝑥, 𝑡 = 𝑢� 𝑥y, 𝑡 .

The gradient is given by the adjoint state method:

∇𝐽 𝑐 𝑥 =E
�F%

)�

−
2

𝑐� 𝑥
𝜕'

𝜕𝑡'
𝑢� 𝑥, 𝑡 𝑣� 𝑥, 𝑡 .

Here 𝑣� is the adjoint wavefield.
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Formulation of full waveform inversion

Adjoint equation:
1

𝑐' 𝑥
𝜕'

𝜕𝑡'
𝑣� 𝑥, 𝑡 − Δ𝑣� 𝑥, 𝑡 = �𝑓� 𝑥, 𝑡 .

Where �𝑓� is the adjoint source:

• Linear normalization

�𝑓� = −E
yF%

)�

𝑃y> ∇𝑊',N,NO
' ℎz 𝑑�,y , ℎz 𝑑�\�,�,y .

• Exponential normalization: 

�𝑓� = −E
yF%

)�

𝑃y> 𝑘𝑒z��,� >∇𝑊',N,NO
' ℎz 𝑑�,y , ℎz 𝑑�\�,�,y .
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Numerical example 1

• Two 10 Hz Ricker wavelets 𝑓 and 𝑔. The amplitude of 𝑓 is 1.2 times of 𝑔.
• Define the misfit function: 

𝐽 𝑠 = d 𝑓 𝑡 − 𝑠 , 𝑔 𝑡 − 0.5 ,
Here d is L2 distance, UOT distance with linear and exponential normalization.
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Numerical example 1
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Numerical example 2

• Velocity model: 𝑐 𝛿𝑐, 𝑧 = 𝑐n 𝑥, 𝑧 + 𝛿𝑐𝐻(𝑧). Here 𝐻 𝑧 is the step function. The 
true model is 𝑐 0.05,0.51 as shown in figure (a).

• Source position are shown as the red spot. There are 51 receivers on the top of 
the model. 

• With homogeneous initial model (b), we compute the misfit function:
�𝐽 𝛿𝑐, 𝑧 = 𝐽 𝑐 𝛿𝑐, 𝑧 ,

where 𝐽 is the misfit function of FWI problem with L2 distance or UOT distance.
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Numerical example 2
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Numerical example 3

• 11 sources with 10 Hz Ricker wavelet 
on the left-hand side and 101 receivers 
on the right-hand side.

• Gradient descent method after 5 
iterations.
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Numerical example 3
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Conclusions and future works

Conclusions:
• Comparing to L2 distance, optimal transport distance has better result with 

respect to time shift.
• The optimal transport distance provides smooth gradient comparing to L2 

distance.

Future works:
• How to choose the parameters of optimal transport efficiently.
• Mathematical results on how the optimal transport distance mitigate the cycle-

skipping issue.
• More realistic numerical experiments are needed such as Marmousi 2 model or 

SEG 2014 benchmark data.
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