

Physics-guided deep learning for seismic inversion: hybrid training and uncertainty analysis

Jian Sun^{1,2}, Kristopher Innanen¹, Chao Huang³

¹ CREWES Project, University of Calgary
 ² College of Earth and Mineral Sciences, The Pennsylvania State University
 ³ School of Ocean and Earth Science, Tongji University

Dec 4, 2020 CREWES Sponsor Meeting

Seismic Inversion: physics-based or data-driven?

Methodology

Seismic Inversion Methods

- Physics-based deterministic methods:
 - Tomography
 - Full waveform inversion

Pros	Cons
 ✓ High generalization ability ✓ Physics-incorporated ✓ Less data requirement 	X Iterative process X Accurate initial models X Computational expensive

Seismic Inversion Methods

- Data-driven methods
 - Bayesian models
 - Deep learning

Pros	Cons
 ✓ Fast and efficient ✓ End-to-end framework ✓ Less computational burden ✓ No expert required 	 X Big data requirement X No physics-involved X Generalization ability is dependent on training dataset

Seismic Inversion Methods

Karpatne et al. 2017

Downton and Hampson, 2018

Methodology: Physics-based

• Objective function:
$$\mathcal{L}_d^k(\tilde{\mathbf{m}}, \mathbf{d}) = \frac{1}{Tkn_s} \sum_{i=1}^k \sum_{s=1}^{n_s} \sum_{t=0}^T \left\| \mathbf{d}_i^{s,t} - \mathcal{F}^{s,t}(\tilde{\mathbf{m}}_i) \right\|^2$$

GEOPHYSICS, VOL. 85, NO. 2 (MARCH-APRIL 2020); P. R87–R99, 19 FIGS., 4 TABLES. 10.1190/GEO2019-0138.1

A theory-guided deep-learning formulation and optimization of seismic waveform inversion

Jian Sun¹, Zhan Niu², Kristopher A. Innanen², Junxiao Li³, and Daniel O. Trad²

ABSTRACT

Deep-learning techniques appear to be poised to play very important roles in our processing flows for inversion and interpretation of seismic data. The most successful seismic applications of these complex pattern-identifying networks will, presumably, be those that also leverage the deterministic physical models on which we normally base our seismic interpretations. If this is true, algorithms belonging to theory-guided data science, whose aim is roughly this, will have particular applicability in our field. We have developed a theory-designed recurrent neural network (RNN) that allows single- and multidimensional scalar acoustic seismic forward-modeling problems to be set up in terms of its forward propagation. We find that training such a network and updating its weights using measured seismic data then amounts to a solution of the seismic inverse problem and is equivalent to gradient-based seismic full-waveform inversion (FWI). By refining these RNNs in terms of optimization method and learning rate, comparisons are made between standard deeplearning optimization and nonlinear conjugate gradient and limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) optimized algorithms. Our numerical analysis indicates that adaptive moment (or Adam) optimization with a learning rate set to match the magnitudes of standard FWI updates appears to produce the most stable and well-behaved waveform inversion results, which is reconfirmed by a multidimensional 2D Marmousi experiment. Future waveform RNNs, with additional degrees of freedom, may allow optimal wave propagation rules to be solved for at the same time as medium properties, reducing modeling errors.

Methodology: Physics-based

• Objective function:
$$\mathcal{L}_d^k(\tilde{\mathbf{m}}, \mathbf{d}) = \frac{1}{Tkn_s} \sum_{i=1}^k \sum_{s=1}^{n_s} \sum_{t=0}^T \left\| \mathbf{d}_i^{s,t} - \mathcal{F}^{s,t}(\tilde{\mathbf{m}}_i) \right\|^2$$

Methodology: Data-driven

• Objective function:
$$\mathcal{L}_m^n(\mathbf{m}, \mathbf{d}) = \frac{1}{n} \sum_{i=0}^n \|\mathbf{m}_i - \tilde{\mathbf{m}}_i\|^2 = \frac{1}{n} \sum_{i=0}^n \|\mathbf{m}_i - \Omega(\mathbf{d}_i; \Theta)\|^2$$

Methodology: Data-driven & Physics-based

Methodology: Physics-guided

Methodology: Hybrid Physics-guided

$$\mathcal{L}^k = \lambda_m \tilde{\mathcal{L}}_m^k + \lambda_d \tilde{\mathcal{L}}_d^k$$

Methodology: Network Architecture

Training a Physics-guided Neural Network (PGNN)

Training a Physics-guided Neural Network (PGNN)

Trade-off parameters

$$\mathcal{L}^k = \lambda_m \tilde{\mathcal{L}}_m^k + \lambda_d \tilde{\mathcal{L}}_d^k$$

Parameters Mode	Number of samples in Train (Val)	Batch-size in Train (Val)	Trade-off (λ_m, λ_d)
CNN	320(120)	16(64)	(1, 0)
PGNN	320(120)	16(32)	(0, 1)
$\text{H-PGNN}^{\frac{0.1}{40}}$	320(120)	16(32)	(0.1, 40)
$\text{H-PGNN}^{\frac{1}{40}}$	320(120)	16(32)	(1, 40)
$\text{H-PGNN}^{\frac{10}{40}}$	320 (120)	16(32)	(10, 40)

Numerical Examples: Training & Validation

Numerical Examples: Test Results

Numerical Examples: Test Results

Error Analysis

Generalization Ability

CREWES

Uncertainty Analysis: Deep Ensembles

Uncertainty Analysis: Dropout

Uncertainty Analysis: Dropout

Position (km)

Position (km)

Position (km)

Uncertainty Analysis: SEG salt Models

Conclusions

- We propose a hybrid physics-guided neural network for seismic inversion by simultaneously reducing both model misfit and physics-based data residual.
- The trade-off parameter selection is essential and analyzed.
- We perform error and uncertainty analysis of deep neural network predictions.
- Given the same training dataset, the physics-guided network outperforms the fully data-driven network:
 - Higher accuracy (smaller model misfit)
 - Obey Physics laws (smaller data residual)
 - o Lower uncertainty
 - Less anomalies

Acknowledgements

- Roar Supercomputer (Penn State)
- CREWES Sponsors
- NSERC

Q & A

