

Physics-guided neural network for velocity calibration using downhole microseismic data

Hongliang Zhang, Jubran Akram and Kris Innanen

December 4, 2020

Background

Architecture of neural network

Fully connected layersForward modeling layer

Synthetic Example

Dataset & Results

- Loss function
- Uncertainty analysis

Summary

- 1-D layered isotropic velocity models are typically used for microseismic event location •
- Velocity is calibrated prior to being used for MS event location

Locations of calibration shots

Calibrated velocity

Tan et al., 2018

14

Physics-guided neural network

Physics-guided neural network

Input & Output

Input: Picked first arrival times of P- and S-waves

Output: Layer velocity values for P- and S-waves

□ Fully connected layers

□ Scaling & Shifting layer

Scaling & Shifting

 $\mathbf{v} = \mathbf{a}_0 + \mathbf{a}_1 \odot \mathbf{y}$

a₀:Lower bounds of layer velocities

a₁:Perturbation intervals of layer velocities

□ Forward modeling layer

Physics-guided neural network

□ Loss function

Loss function

$$\phi = \sqrt{\alpha_1 \sum_{i=1}^{M} \sum_{j=1}^{N} [T_P^{ij} - (t_P^{ij} + T_P^{i0})]^2 + \alpha_2 \sum_{i=1}^{M} \sum_{j=1}^{N} [T_S^{ij} - (t_S^{ij} + T_S^{i0})]^2 + \alpha_3 \sum_{i=1}^{M} \sum_{j=1}^{N} [(T_P^{ij} - T_S^{ij}) - (t_P^{ij} - t_S^{ij})]^2}$$

Tan et al., 2018

Origin time

$$T^{i0} = \frac{1}{N} \sum_{j=1}^{N} (T^{ij} - t^{ij})$$

Nelson and Vidale, 1990

□ Acquisition geometry & Velocity model

- 12 geophones
- 6 calibration shots

□ Simplification from 3D to 2D

- Adam algorithm
- 1,000 iterations
- Noise standard deviation: 0.5 ms
- PyTorch
- Intel Core i7-8700 CPU, 16 GB Memory
- ~ 10 min for training

P-wave arrival times

S-wave arrival times

Mean rms errors: 0.45 ms and 0.51 ms

 $\phi =$

Distance (m)

Hybrid loss function

2100

Mean deviations of depth and distance: 2.2 m and 3.6 m

□ Locations of Calibration Shots

 Velocity-calibration problem

Uncertainty Analysis

Results using six calibration shots

Results using one calibration shot

- Noise standard deviation: 0.5 ms
- 100 times inversion with different initializations
- Mean deviation from true velocity: 76 m/s, 97 m/s
- Mean standard deviation: 33 m/s, 47 m/s

We designed a physics-guided neural network to calibrate 1D layered velocity model that

- incorporates a forward modeling layer
- eliminates the need for training data and the explicit programming for inversion algorithm

A hybrid loss function is used that provides better constraints for both event-location and velocitycalibration problems

The proposed neural network will be further tested with field data

- All CREWES sponsors
- NSERC (CRDPJ 461179-13, CRDPJ 543578-19)
- Canada First Research Excellence Fund (CFREF)

Mean deviations of depth: 2.2 m, 2.7 m Mean deviations of distance: 3.6 m, 4.7 m

Distance (m)