

GPU applications for modelling, migration, FWI and machine learning

CREWES 2021 Daniel Trad December 2, 2021

😯 Outline

- HPC models and different philosophies
- CUDA implementations for finite differences
- Examples: Modelling and RTM
- Examples for multigrid FWI
- Applications to Machine Learning
- The future

HPC evolution

Programming for GPUs: Host-Device model

Host/Device Heterogenous Dataflow

Distinction between host (CPU) and device (GPU). They have different code and different memory

HOST Device Kernel call Grid <<<Grid, Block>>> Block(0,0) Block(1,0) Block(2,0) Block(0,1)Block(1,1) Block(2,1)**PCIE** Block(0,2) Block(1,2) Block(2,2) Groups of cores (Streams) Each stream has a Thread(0,0,0) Thread(1,0,0) Thread(2,0,0) grid of blocks Thread(1,1,0) Each block has Thread(0,1,0) Thread(2,1,0) threads Thread(0,0,0) Thread(1,1,0) Thread(2,2,0)

Device hierarchy Grid/Block/Thread

Programming for GPUs: Memory hierarchies

Threads can communicate very fast inside the same block, but much slower across blocks.

Different memory bandwidth for each type of memory (notice it differs by orders of magnitude)

Device hierarchy Grid/Block/Thread

Programming for GPUs: Convolutional Pattern

Finite difference (8th order, 25Hz) running times per shot (RTX2070)

a a construction and a construction of the

Computing times for Finite Differences

```
Modeling times with OPENMP, OPENMPI and CUDA (same desktop)
Second Order:

OPENMP, 12 threads, 10 shots → 18 sec
CUDA, RTX2070, 10 shots → 3 sec

Fourth Order:

OPENMP, 12 threads, 10 shots → 220 sec
OPENMPI, 12 threads (1node=1thread), 10 shots → 60 sec
CUDA, RTX2070, 10 shots → 3 sec

Eight Order:

OPENMP, 12 threads, 10 shots -> 800sec
OPENMPI, 12 threads (1node=1thread), 10 shots → 300 sec
CUDA, RTX2070, 10 shots → 3 sec
```

All times measured on the same desktop computer: CPU hexacore i7, 2016 GPU RTX2070

Comparison CPU/GPU standard/PML (Marmousi)

RTM Marmousi

Comparison same machine OPENMP 10 threads ~ 10 min. MPI 10 nodes (1 thread each) ~ 4 minutes GPU ~ 11 seconds (30X)

RTM Marmousi II

Computing time: 25 seconds

Computation time ~ 3 minutes

Sigsbee 50 shots, ~ 22 minutes

model size 1201x3201, 8th order in space 20Hz.

RTM Pluto, 50 shots, \sim 16 minutes

model 1000 x 3000, 4th order space, 20 Hz

BP2004 100 shots, ~ 1hour 40 minutes

model size 956x5395, 4th order in space 20Hz.

Full Waveform Inversion Basics (Inversion)

$$J = \|d_{predicted} - d_{acquired}\|^2$$

$$\mathbf{d}_{\mathbf{predicted}} = \mathbf{L}(\mathbf{v}_{\mathbf{iter}})$$

$$\mathbf{v}_{\mathbf{iter}} = \mathbf{v}_{\mathbf{iter}-1} + lpha \mathbf{\Delta} \mathbf{v}$$

$$\Delta v = RTM(Residuals)$$

The cycle skipping problem

cost functions for different frequencies

High frequencies require better initial model

Direct vs Multigrid for foothills model

Multigrid stages for Marmousi Model (inverse crime)

Dataflow III – Multigrid with shaping filter and cross-correlation shifts.

Multigrid for Marmousi model: CUDA and multigrid (no inverse crime)

Multigrid stages for foothills model: CUDA (no inverse crime)

vsnaps3c.rsf

GPU Computing times multigrid FWI

Table 1. GPU Computation times in a regular desktop (for the example in Figure 20)

model size	cell size	time steps	nshots	iterations	time
96 x 288	32, 32	4600	40	15	263 secs
188 x 576	16, 16	4600	40	15	410 secs
376 x 1151	8, 8	4600	40	5	366 secs

Computing times multigrid FWI CPU vs GPU

Table 2. CPU Computation times (MPI-Multithread) in a 10 nodes cluster

model size	cell size	time steps	nshots	iterations	time
96 x 288	32, 32	2800	40	20	196 secs
188 x 576	16, 16	2800	40	20	576 secs
376 x 1151	8, 8	4600	40	20	4481 secs

Table 3. GPU Computation times in a regular desktop with a RTX2070

model size	cell size	time steps	nshots	iterations	time
96 x 288	32, 32	2800	40	20	206 secs
188 x 576	16, 16	2800	40	20	327 secs
376 x 1151	8, 8	4600	40	20	1466 secs

Superlinear scaling in multigrid FWI

GPU scaling, expected (from stage 1) and real

stage	time expected	time real	ratio expected	ratio real
1	_	206	—	-
2	824	327	4	1.6
3	5100	1466	26	3.6
~	0100	1.00		0.0

Applications to Machine Learning

26

The Future

Immediate future (next report), expanding to:

- 3D
- anisotropy
- Near surface and topography
- Elastic. Next year meeting.

Game changer technologies:

• Fourier Neural Operators: both Nvidia and Microsoft claim enormous speedups for modelling. We are trying for wave equation. Still it needs training. Probably 10X faster than this work for fine grids (after training).

SUMMARY

- GPU-Finite difference, implemented correctly, 100x speedups.
- Under-used resources lead to superlinear speedup
- Permit better approximations without computational penalty.
- Applications for modeling, RTM, FWI and training neural networks.
- Parallelization essential component of research.

Support:

- CREWES sponsors
- Canadian SEG (Chair in Exploration Geophysics)
- Natural Sciences and Engineering Research Council of Canada

special thanks to Penliang Yang, Sam Gray and Torre Zuk