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• Applications to Machine Learning
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HPC evolution

Han, Jaegeun, and Bharatkumar
Sharma,  2019

CPU+GPU 
heterogeneous

Shared memory
(multicore CPUs) Distributed memorySequential

CPU based
Latency reducing
(mostly by cache)

Latency hiding
(multithreading)



Programming for GPUs: Host-Device model

CUDA C/C++
Host code

Parallel code

Host code

Parallel Code

CPU

GPU

GPU

CPU

PCIE

PCIE

HOST

Kernel call
<<<Grid, Block>>>

Device

Grid
Block(0,0) Block(2,0)Block(1,0)

Block(0,1) Block(2,1)Block(1,1)

Block(0,2) Block(2,2)Block(1,2)

Thread(0,0,0) Thread(1,0,0) Thread(2,0,0)

Thread(0,1,0) Thread(1,1,0) Thread(2,1,0)

Thread(0,0,0) Thread(1,1,0) Thread(2,2,0)

Host/Device Heterogenous Dataflow 

Distinction between host (CPU) and device (GPU).
They have different code and different memory

Device hierarchy Grid/Block/Thread 

Groups of cores 
(Streams)
Each stream has a 
grid of blocks
Each block has 
threads

PCIE



Programming for GPUs: Memory hierarchies

Different memory bandwidth for each 
type of memory (notice it differs by 

orders of magnitude)

HOST

cudaMalloc
cudaMemcpy
cudaMemset
cudaFree
Kernel call
<<<Grid, Block>>>

Device (Grid)
Block 0

Device hierarchy Grid/Block/Thread 

Threads can communicate very fast inside the 
same block, but much slower across blocks. 

PCIE

thread thread thread

shared memory

global memory

Block 1

thread thread thread

shared memory

RAM



GPU

Programming for GPUs: Convolutional Pattern

Wavefield in global memory

stencil in constant memory

wavefield divided in 
overlapping blocks 
distributed in shared 
memory

shared mem

block

threads

shared mem

block

threads

shared mem

block

threads

shared mem

block

threads

shared mem

block

threads

Grid

CPU 
HOST

CPU RAM
150Gb/sec

GPU RAM
900Gb/sec Shared Mem

20000 GB/sec

PCIE
50GB/sec



Finite difference (8th order, 25Hz) running times per shot (RTX2070) 
Marmousi velocity (km/s)

Sigsbee velocity (km/s)

Foothills velocity (km/s)

BP2004 velocity (km/s)

shot gather

shot gather

shot gather

shot gather

0.3 sec
X50

1 sec

6 sec 2 sec



Computing times for Finite Differences 

Modeling times with OPENMP, OPENMPI and CUDA (same desktop)
Second Order: 

OPENMP, 12 threads, 10 shots  18 sec
CUDA,  RTX2070, 10 shots  3 sec

Fourth Order: 
OPENMP, 12 threads, 10 shots  220 sec
OPENMPI, 12 threads (1node=1thread), 10 shots  60 sec
CUDA,  RTX2070, 10 shots  3 sec

Eight Order: 
OPENMP, 12 threads, 10 shots -> 800sec
OPENMPI, 12 threads (1node=1thread), 10 shots  300 sec
CUDA,  RTX2070, 10 shots  3 sec

All times measured on the same desktop computer:
CPU hexacore i7, 2016
GPU RTX2070



Comparison CPU/GPU standard/PML (Marmousi)

CPU sponge
4 order
10 threads
20 sec

CPU PML
4 order
10 threads
37 sec

GPU sponge
8th order
RTX2070
0.45 sec

GPU PML
8th order
RTX2070
0.52 sec

Perfectly Matched Layer
Propagates 4 waves
Px, Py, Vx, Vz
4 times more work
same time with GPU
double time with CPU

Superlinear scaling ?
GPU resources are not 
fully used. 



RTM Marmousi

Comparison same machine 
OPENMP 10 threads ~ 10 min.
MPI 10 nodes (1 thread each) ~ 4 minutes
GPU ~ 11 seconds (30X)

Velocity (376x1151 cells) RTM, 12 shots 4th order space, 20  Hz



RTM Marmousi II

Computing time: 25 seconds

Velocity (400x1942 cells) RTM, 25 shots 4th order space, 20  Hz



RTM Foothills, 50 shots, ~ 3 minutes

Computation time ~ 3 minutes

Velocity (1000x1600 cells) RTM, 50 shots 4th order space, 20  Hz



Sigsbee 50 shots, ~ 22 minutes

model size 1201x3201, 8th order in space 20Hz. 



RTM Pluto, 50 shots, ~ 16 minutes

model 1000 x 3000, 4th order space, 20  Hz



BP2004 100 shots, ~ 1hour 40 minutes

model size 956x5395, 4th order in space 20Hz. 



1) Forward model 
through          to 
predict data

a) Initial 
velocity 
model

b) Raw data

 

2) Ungained RTM of 
“data residual” with                                 
and stack

3) Scale gradient (line 
search) and deduce 
velocity perturbation

4) Update velocity 
model

( ) ( )RTM kG x δψ=

1k =
0v

1k k= +

1k k kvv v δ−= +

1kv −

kψ

kψ

rψ

rψ

rk kδψ ψ ψ= −

0v

kv
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kvδ
( )kv G xδ λ= 

Full Waveform Inversion Basics (Inversion)



The cycle skipping problem
cost functions for different frequencies

Low frequency

high frequency

solution

L 2
no

rm

global 
minimum

LF local 
minimum

High frequencies require better initial model

HF local 
minimum



Direct vs Multigrid for foothills model

INITIAL

0-16Hz 0-25Hz
0-25Hz0-25Hz

Direct Multigrid

Initial modelTrue model



Multigrid stages for Marmousi Model (inverse crime)

INITIAL 0-8Hz

0-16Hz 0-25Hz

INITIAL



Input data

shaping to low freq

FWI to coarse grid

Final image

interpolate to denser grid/increase freq interval 

Dataflow III – Multigrid with shaping filter and cross-correlation shifts.

cross-correlation to 
find shifts



Multigrid for Marmousi model: CUDA and multigrid (no inverse crime)

INITIAL 0-8Hz

0-16Hz 0-25Hz



Multigrid stages for foothills model: CUDA (no inverse crime)

INITIAL 0-8Hz

0-16Hz 0-25Hz

INITIAL 0-8Hz

0-16Hz 0-25Hz



GPU Computing times multigrid FWI

Stage 1 - 0-8Hz 32x32 Stage 2 - 0-16Hz 16x16 Stage 3 - 0-25Hz 8x8



Computing times multigrid FWI CPU vs GPU



Superlinear scaling in multigrid FWI

all times in seconds
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Applications to Machine Learning

RTM-CNN RTMM-CNN



The Future

Immediate future (next report), expanding to:
• 3D 
• anisotropy
• Near surface and topography
• Elastic. Next year meeting.

Game changer technologies:
• Fourier Neural Operators: both Nvidia and Microsoft claim enormous 

speedups for modelling. We are trying for wave equation. Still it needs 
training.  Probably 10X faster than this work for fine grids (after training).



SUMMARY

GPU-Finite difference, implemented correctly, 100x speedups.

Under-used resources lead to superlinear speedup

Permit better approximations without computational penalty. 

Applications for modeling, RTM, FWI and training neural networks.

Parallelization essential component of research. 
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