
www.crewes.org

GPU applications for
modelling, migration, FWI and
machine learning

CREWES 2021
Daniel Trad
December 2, 2021

Outline

• HPC models and different philosophies

• CUDA implementations for finite differences

• Examples: Modelling and RTM

• Examples for multigrid FWI

• Applications to Machine Learning

• The future

HPC evolution

Han, Jaegeun, and Bharatkumar
Sharma, 2019

CPU+GPU
heterogeneous

Shared memory
(multicore CPUs) Distributed memorySequential

CPU based
Latency reducing
(mostly by cache)

Latency hiding
(multithreading)

Programming for GPUs: Host-Device model

CUDA C/C++
Host code

Parallel code

Host code

Parallel Code

CPU

GPU

GPU

CPU

PCIE

PCIE

HOST

Kernel call
<<<Grid, Block>>>

Device

Grid
Block(0,0) Block(2,0)Block(1,0)

Block(0,1) Block(2,1)Block(1,1)

Block(0,2) Block(2,2)Block(1,2)

Thread(0,0,0) Thread(1,0,0) Thread(2,0,0)

Thread(0,1,0) Thread(1,1,0) Thread(2,1,0)

Thread(0,0,0) Thread(1,1,0) Thread(2,2,0)

Host/Device Heterogenous Dataflow

Distinction between host (CPU) and device (GPU).
They have different code and different memory

Device hierarchy Grid/Block/Thread

Groups of cores
(Streams)
Each stream has a
grid of blocks
Each block has
threads

PCIE

Programming for GPUs: Memory hierarchies

Different memory bandwidth for each
type of memory (notice it differs by

orders of magnitude)

HOST

cudaMalloc
cudaMemcpy
cudaMemset
cudaFree
Kernel call
<<<Grid, Block>>>

Device (Grid)
Block 0

Device hierarchy Grid/Block/Thread

Threads can communicate very fast inside the
same block, but much slower across blocks.

PCIE

thread thread thread

shared memory

global memory

Block 1

thread thread thread

shared memory

RAM

GPU

Programming for GPUs: Convolutional Pattern

Wavefield in global memory

stencil in constant memory

wavefield divided in
overlapping blocks
distributed in shared
memory

shared mem

block

threads

shared mem

block

threads

shared mem

block

threads

shared mem

block

threads

shared mem

block

threads

Grid

CPU
HOST

CPU RAM
150Gb/sec

GPU RAM
900Gb/sec Shared Mem

20000 GB/sec

PCIE
50GB/sec

Finite difference (8th order, 25Hz) running times per shot (RTX2070)
Marmousi velocity (km/s)

Sigsbee velocity (km/s)

Foothills velocity (km/s)

BP2004 velocity (km/s)

shot gather

shot gather

shot gather

shot gather

0.3 sec
X50

1 sec

6 sec 2 sec

Computing times for Finite Differences

Modeling times with OPENMP, OPENMPI and CUDA (same desktop)
Second Order:

OPENMP, 12 threads, 10 shots  18 sec
CUDA, RTX2070, 10 shots  3 sec

Fourth Order:
OPENMP, 12 threads, 10 shots  220 sec
OPENMPI, 12 threads (1node=1thread), 10 shots  60 sec
CUDA, RTX2070, 10 shots  3 sec

Eight Order:
OPENMP, 12 threads, 10 shots -> 800sec
OPENMPI, 12 threads (1node=1thread), 10 shots  300 sec
CUDA, RTX2070, 10 shots  3 sec

All times measured on the same desktop computer:
CPU hexacore i7, 2016
GPU RTX2070

Comparison CPU/GPU standard/PML (Marmousi)

CPU sponge
4 order
10 threads
20 sec

CPU PML
4 order
10 threads
37 sec

GPU sponge
8th order
RTX2070
0.45 sec

GPU PML
8th order
RTX2070
0.52 sec

Perfectly Matched Layer
Propagates 4 waves
Px, Py, Vx, Vz
4 times more work
same time with GPU
double time with CPU

Superlinear scaling ?
GPU resources are not
fully used.

RTM Marmousi

Comparison same machine
OPENMP 10 threads ~ 10 min.
MPI 10 nodes (1 thread each) ~ 4 minutes
GPU ~ 11 seconds (30X)

Velocity (376x1151 cells) RTM, 12 shots 4th order space, 20 Hz

RTM Marmousi II

Computing time: 25 seconds

Velocity (400x1942 cells) RTM, 25 shots 4th order space, 20 Hz

RTM Foothills, 50 shots, ~ 3 minutes

Computation time ~ 3 minutes

Velocity (1000x1600 cells) RTM, 50 shots 4th order space, 20 Hz

Sigsbee 50 shots, ~ 22 minutes

model size 1201x3201, 8th order in space 20Hz.

RTM Pluto, 50 shots, ~ 16 minutes

model 1000 x 3000, 4th order space, 20 Hz

BP2004 100 shots, ~ 1hour 40 minutes

model size 956x5395, 4th order in space 20Hz.

1) Forward model
through to
predict data

a) Initial
velocity
model

b) Raw data

2) Ungained RTM of
“data residual” with
and stack

3) Scale gradient (line
search) and deduce
velocity perturbation

4) Update velocity
model

() ()RTM kG x δψ=

1k =
0v

1k k= +

1k k kvv v δ−= +

1kv −

kψ

kψ

rψ

rψ

rk kδψ ψ ψ= −

0v

kv

1kv −

kvδ
()kv G xδ λ= 

Full Waveform Inversion Basics (Inversion)

The cycle skipping problem
cost functions for different frequencies

Low frequency

high frequency

solution

L 2
no

rm

global
minimum

LF local
minimum

High frequencies require better initial model

HF local
minimum

Direct vs Multigrid for foothills model

INITIAL

0-16Hz 0-25Hz
0-25Hz0-25Hz

Direct Multigrid

Initial modelTrue model

Multigrid stages for Marmousi Model (inverse crime)

INITIAL 0-8Hz

0-16Hz 0-25Hz

INITIAL

Input data

shaping to low freq

FWI to coarse grid

Final image

interpolate to denser grid/increase freq interval

Dataflow III – Multigrid with shaping filter and cross-correlation shifts.

cross-correlation to
find shifts

Multigrid for Marmousi model: CUDA and multigrid (no inverse crime)

INITIAL 0-8Hz

0-16Hz 0-25Hz

Multigrid stages for foothills model: CUDA (no inverse crime)

INITIAL 0-8Hz

0-16Hz 0-25Hz

INITIAL 0-8Hz

0-16Hz 0-25Hz

GPU Computing times multigrid FWI

Stage 1 - 0-8Hz 32x32 Stage 2 - 0-16Hz 16x16 Stage 3 - 0-25Hz 8x8

Computing times multigrid FWI CPU vs GPU

Superlinear scaling in multigrid FWI

all times in seconds

26

Applications to Machine Learning

RTM-CNN RTMM-CNN

The Future

Immediate future (next report), expanding to:
• 3D
• anisotropy
• Near surface and topography
• Elastic. Next year meeting.

Game changer technologies:
• Fourier Neural Operators: both Nvidia and Microsoft claim enormous

speedups for modelling. We are trying for wave equation. Still it needs
training. Probably 10X faster than this work for fine grids (after training).

SUMMARY

GPU-Finite difference, implemented correctly, 100x speedups.

Under-used resources lead to superlinear speedup

Permit better approximations without computational penalty.

Applications for modeling, RTM, FWI and training neural networks.

Parallelization essential component of research.

Ackowledgments

Support:

• CREWES sponsors
• Canadian SEG (Chair in Exploration Geophysics)
• Natural Sciences and Engineering Research Council of Canada

special thanks to Penliang Yang, Sam Gray and Torre Zuk

