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Introduction

• Enhanced oil recovery (EOR)
• CO2 storage Bortoni, et al., 2021

4D signal amplitudes (a) 4D 20 Hz RTM stack inline view; (b) 4D 20 Hz FWI Image inline 
view; (c) 4D 20 Hz RTM stack depth-slice view; (d) 4D 20 Hz FWI Image depth-slice view.

(a) (b)

(c) (d)
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Present time-lapse FWI strategies

Parallel strategy (PRS) Sequential strategy (SQS) Double-difference strategy (DDS)

Common-model strategy (CMS) Central-difference strategy (CDS)

Routh et al., 2012

Zheng et al., 2011

Hicks et al., 2016
Zhou and Lumley, 2021
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Stepsize sharing in time-lapse FWI
Monitor inversion：

Baseline inversion：

Implied baseline model：
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Stepsize sharing in time-lapse FWI

Stepsize-sharing parallel strategy 
(SSPRS)

Stepsize-sharing common-model strategy 
(SSCMS)
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Numerical example
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Numerical example-Noise-free and perfectly repeatable data sets
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Numerical example-Noisy data sets

SNR=20
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Numerical example-Noisy data sets

SNR=10
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Numerical example-Noisy data sets

SNR=5
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Numerical example-Source locations are different

Monitor source locations are 10m larger than baseline source locations
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Numerical example-Source location errors

Monitor source locations are 20m larger than baseline source locations
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Numerical example-Source location errors

Monitor source locations are 40m larger than baseline source locations
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Numerical example-Biased starting models
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Numerical example-Biased starting models data fitting
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Numerical example-Biased starting models

Starting model is 100m/s larger than the accurate starting model
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Numerical example-Biased starting models

Starting model is 100m/s smaller than the accurate starting model
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Numerical example-Model errors
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• Noise-free and perfectly repeatable:
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• Noisy and identical source locations: 
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• Noise-free and different in source locations: 
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• Biased starting models: 
DDS SSCMS
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Numerical example-The case of combined conditions

• Monitor source locations are 20m larger than baseline source locations
• SNRs are 20
• Starting model is 100m/s larger than the unbiased one
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• Monitor source locations are 20m larger than baseline source locations
• SNRs are 20
• Starting model is 100m/s smaller than the unbiased one

Numerical example-The case of combined conditions
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Conclusions

• The parallel strategy (PRS) has the artifacts caused by the difference of the convergences, is 
not noise resistant, and is sensitive to biased starting models.

• The double-difference strategy (DDS) is well applicable for the case of well-repeatable time-
lapse surveys, but it is too sensitive to the difference in source locations

• The common-model strategy (CMS) cannot solve the artifacts resulting from the difference of 
the convergences, but can improve the anti-noise property, and is stable in unrepeatable 
source locations, but fails in the case of biased starting model.

• The central-difference strategy  (CDS) has good performance in the cases of noisy data and 
non-repeatable source locations, also can decay the artifacts resulting from the difference of 
the convergences in some degree, but it fails in the case of biased starting model too.

• The stepsize-sharing common-model strategy (SSCMS) has good performance on reducing 
the artifacts caused by the convergences difference, noisy data, non-repeatable source 
locations, and biased starting models. It may as a potential strategy for real field data inversion.

• Biased starting models  can mislead the interpretation of inversion results .
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Discussion

• In this study, elastic effects are not considered.

• Only the land model is discussed, things could be different in the marine model, such 
as water level and/or velocity change.

• The surface change could happen in different seasons on the land.

• Source wavelets' non-repeatability will also be tested in the future study.
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