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ABSTRACT

When the wavelength of a disturbance within a composite medium is large in
comparison to the constituents of the composite, it becomes appropriate to look for
average quantities which describe the relevant observable phenomena and to replace the
composite with a generalized continuum which describes the evolution of these average
quantities. One particular form of averaging will be investigated and a particular
generalized continuum description will be developed for a linear elastic composite.

INTRODUCTION

Any material which at one scale looks to be homogeneous will at some other
scale appear to be heterogeneous and even possibly discontinuous. To see this, one
only needs to acknowledge the existence of molecules and atoms at some scale.
Nevertheless, the continuum description has been so successful and the alternative of
describing all the effects on all the constituent particles so daunting that we return to the
continuum description with little hesitation. Rivlin (1968) showed how a system of
particles each comprised of different mass points can be described as a generalized
continuum and Eringen (1968) showed how to start from a granular composite and
reach the same end, which he calls a micromorphic continuum. A composite is just a
heterogeneous continuum which at some scale will also appear to be homogeneous,
even though its behavior may be quite unique at that scale. Backus (1962) looked at a
composite of layered media and through averaging was able to describe the static
behavior as a transversely isotropic homogeneous medium. Others have attempted to
push this basically static description to nonzero wavelengths with some success. The
dynamic effects such as dispersion of the wavelet has not been dealt with in these
cases. In this paper the basic thrust is to generalize Backus's (1962) averaging method
and to mathematically develop a generalize continuum theory consistent with this
method of averaging.

PERTURBATION TO BACKUS AVERAGING

The following averaging scheme was introduced in Backus's (1962) paper. He
defined a linear averaging operator in the form:

I.:w(_ ) f(_)d_ (l)
= -x ,

where
w(x)>_0, w(+_)=0
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For functions f that are approximately constant when x is varied by no more than l,
Backus used the following approximation:

(,fg)= f(g). (2)

As a fh-st step one may generalize equation (1) to n dimensions by letting x
represent an n-dimensional position vector and then recast the linear average as:

f

_(x) = .,Ivw(_- x)f(_ dV_, (3)

such that,

w(x) _ 0, w(_+_)= 0,

Iv _(xldVx = ], ±('x _(xtlax= 0,. AtJ_

"-!-('xZ w(xt) dX= _Atj.and at= I_ w(xt) dx,

where t is a unit vector, indicating the direction for which the appropriate property is
calculated, and v. represents the limit as a finite volume Vx is allowed to expand and
cover all space.

Now we attempt to generalize the approximation. Our assumption is, for a
neighborhood around x where x varies by no more than i t in the direction of unit vector
t, the function f can be represented by a Taylor's series as follows:

f(y)=f(x)+f,i(x)(y'-x')+ 2Lf,o(x)(yl_xi)_. x:)+ ..., (4)

where yi are the components of vector y, x _ are the components of vector x, f_
represents the partial derivative off with respect to x _ and summation on repeated
diagonal indices is enforced. We now turn our attention to the product of the functionf
with another function g and the average of the product:

(fgXx)=I_. w(y-x)f(y)g(y)dV, (5)
JV

+ x/,x,,+...i
=_,,_(,,)}+:,,(x)[(_(x)x,)-x,(g<,,))]+

+_:.,,<x)[<_(,),,,,)-,_(x)x,)-,,<g(,)x_>+x,x:_(,)>]+..."
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As can be seen by direct comparison of equation (5) and equation (2) the first term of
equation (5) is equation (2). It must be recognized at this point that equation (5) is
only accurate as an infinite series and, if we truncate it, the function f and all its
derivatives must be approximated by some averages as well. This point seemed to have
been glossed over in Backus' (1962) paper. The use of Taylor-series truncations also
results in the assumption of a smooth neighborhood of the function in question.

POTENTIAL APPLICATION IN LINEAR ELASTICITY

First consider the constitutive relation of a linear elastic material below:

o#= c!_a_ , (6)

keeping in mind the difficulties above. The average of equation (6), by using the first
two terms in relation (5), can be written as:

=C::kte"+B::i,i"_.,,., (7)
where

C_',,=(_5_andB_J:=(c!_x') - x" (c::,,).

The linear momentum equation in the absence of body forces is:

oJ(i -p _ii=0. (8)

Before considering the average of equation (8), we shall derive a couple of intermediate
results. Consider:

(o_{.y)= IV. w(_i"xl) °_{'1<_i)dVg, (9)

which can be cast in another form by the following reasoning:

Etw(.x,) _aw('-x,) + .x,)oeJ( ')

Ow(_'-x') o#(_)+ w(_'-x') _{j(_). (10)
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When relation (10) is used in equation (9) we have:

(_{'J)= fv. _[w(_i "xl) °'q(_i)]dVg+ fV2(.. _w(_i " xl) °iJ(_i)dV{_xj

=(o_).i, (11)

where we have used the divergence theorem and the fact that wgoes to zero on S.. We
shall now use equation (5) to recast the average of the product of density and particle
acceleration as:

_ou)=u p + u..,,,_t'+"'u..,, v'", (12)
where

P=_)} , I.t"=_x'_-x"(p}.

and ¢""=L2 ((pxmx"}- x'(p x")- x"(p x'_+ x" x" (p))

Note that we have chosen the highest order of spatial differentiation in the displacement
to be consistent with the terms kept for linear deformation in equation (7). The equation
of motion (6) can be averaged in the following manner:

0' .,I 0,
which, upon substitution of relations (11) and (12) becomes:

•.i -- .-i ra "
((_),j-u p- ", rnnU.,ran V =u..,, I1 - O. (13)

Using equation (7) in equation (13) results in:

..... .u.m.v =0 (14)

Equation (14) can be put into a more useful form by using the following relations:

en=L( uk.t+ u '.k) ,

2 ' nij..ra Bii..n.,C..iJkl= c..i{kand o.._a = ..a ,

which upon introduction to equation (14) is transformed into:

[."q -I,l+ Bii.."eu "1. "filZ fil ,,,. ..i v""-t..k_e ..k, .... j._- _,- ..,,_, - u.... - 0 (15)

I h_ve been able to gain some headway in deriving equation (15) as a direct
consequence of Hamilton's principle as outlined in Bedford's (1985) book. This is an
interesting mathematical exercise, but how can we use the new generalized continuum
description to give us more information? As a step towards answering that question, we
shall look at the simple situation of a plane wave propagating through this medium.
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PLANE-WAVE SOLUTION

Consider the possibility that there exist plane-wave solutions to equation (15) of
the following form:

ur=aprexl_i[k, x'- o)t])=aprexp(i kin, xs- vt]). (16)
where

u' ---displacement vector,
A ---amplitude,
p" ---unit polarization vector,
ks ---propagation vector,
x" =-spatial coordinate vector,
co---angular frequency,
t -=time variable,

k =-magnitude of propagation vector [1_=
and n, _ unit vector in direction of phase propagation.

On substituting equation (16) in equation (15) and assuming C and B are constant
tensors, we arrive at:

[-Cabcakakb-iB_bca, kakbk" +o_'p_c+il_k'o_?_ac-ve[k'kfa_c]pC=O, (17)

such that
_c ---Kronecker delta.

Using the identity kd = k nd we can recast equation (17) in the following form:

, (18)
where

- (c.,°,." +i(k n n')
('ff- k2v,f n"nl) + i (k l.kn")

In order that equation (18) have nontrivial solutions, the following condition must be
satisfied:

det [v=5_ - C:J = 0. (19)

Equation (19) is of the form of an eigenvalue problem. The eigenvalues resulting from
its solution will be the phase velocities. It is interesting to note that when k = 0,
equation (18) takes on the same form as the velocity equations in standard elastic
media. These velocities will in general he complex, indicating attenuation and
dispersion are possibilities. Once the eigenvalues are obtained, equation (18) can then
be use to solve for the polarization vector (eigenvector).
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CONCLUSION

This preliminary investigation into the use of generalized continua to describe
the average behavior of a composite has resulted in a series of equations which is meant
to describe the dynamic behavior of the composite in an averaged sense. A plane wave
solution was tried in the equations and conditions for the existence of plane waves was
derived. It must be stressed at this point that the indication of a dynamic expression,
quite different from the one governing the individual component of the composite, is
probably the most important feature of the exercise.
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