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A review of the finite-element method in seismic wave modelling 

Faranak Mahmoudian and Gary F. Margrave 

ABSTRACT  
Numerical solutions of the scalar and elastic wave equations have greatly aided 

geophysicists in both the forward modelling and migration of seismic wavefields in 
complicated geologic media. In P- and S-wave propagation, the finite-element method is 
a powerful tool for determining the effect of structural irregularities on wave propagation. 
Dependence of the wave equation on both spatial and temporal differentials requires 
solving both spatial and temporal discretization. In the spatial discretization step in 1D 
and 2D, piecewise linear basis functions and the Galerkin method are the most commonly 
used tools. After solving spatial discretization with the finite-element method, the wave 
equation reduces to an ODE (ordinary differential equation). In this regard, different 
authors used different ODE solver including Runge-Kutta method and finite-difference 
method. This paper will familiarize the reader with the diverse approaches of solving 
temporal discretization. An application of finite-element methods to solve seismic wave 
motion in linear viscoelastic media (where inelastic strains development depends not only 
on the current state of the stress and strain but on the full history of their development), 
using memory variable formalism in spatial discretization step, is one of the reviewed 
sections. 

INTRODUCTION 
Numerical solutions of the scalar and elastic wave equations have greatly aided 

geophysicists in both forward modelling and migration of seismic wavefields in 
complicated geologic media, and they promise to be invaluable in solving the full inverse 
problem. One of the numerical methods that can be applied to the problem of wave 
propagation is the finite-element method. The finite-element method has become the 
most widely accepted general-purpose technique for numerical simulations in 
engineering and applied mathematics. Principal applications arise in continuum 
mechanics, fluid flow, thermodynamics, and field theory. In these areas, computational 
methods are essential and benefit strongly from the enormous advances in computer 
technology. The finite-element method is a powerful tool for the numerical  modelling of 
seismic body-wave propagation in a heterogeneous elastic media. The finite-element 
results agree with finite-difference results (Smith, 1975) but in spite of this, the method 
has never become popular in the geophysical literature. Perhaps this is because 
implementation is more difficult that other methods (Kay, 1996). 

The finite-element method is a general technique for constructing approximate 
solutions to boundary-value problems to solve physical problems. In the finite-element 
analysis, a body is considered to be an assemblage of discrete finite elements 
interconnected at nodal points on element boundaries. One-, two-, and three-dimensional 
elements have a variable number of nodes. Figure 1 shows some typical continuum 
elements. Bathe (1996) considers the following steps to solve a problem with the finite-
element method: 
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1) The idealization of the physical problem to a mathematical model requires 
certain assumptions that together lead to differential equations governing the 
mathematical model.  

2) The identification of the unknown displacements that completely define the 
displacement response of the structural idealization. 

3) The formulation force-balance equations corresponding to the unknown 
displacement and the solution of these equations. 

4) The interpretation of the displacement predicted by the solution of the structural 
idealization (Based on the assumption used). 

 

(b) Two-dimensional elements 

(a) Truss and cab le elements

(c) Three-dimensional e lements

(b) Two-dimensional elements 

(a) Truss and cab le elements

(c) Three-dimensional e lements
 

FIG. 1. Typical elements for finite-element method (after Bathe 1998). 

Since the finite-element solution technique is a numerical procedure, it is necessary to 
assess the solution accuracy. If the criteria are not met, the finite-element solution has to 
be repeated with refined solution parameters (such as finer mesh) until sufficient 
accuracy is reached. Appendix A shows the finite-element process briefly.  

Dependence of wave equation on both spatial and temporal derivatives requires both 
spatial and temporal discretization. In spatial discretization in 1D and 2D piecewise linear 
basis functions, the Galerkin method in variational form is one of the finite-element 
methods that is used by many authors. 
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WAVE PROPAGATION IN ELASTIC MEDIA 

1D Spatial Discretization 

Consider a one dimensional (1D) domain, X, in an elastic medium. The equation of 
motion for one degree of freedom elastic wave is 

 ( ),),('),(),( 2

2

txuM
xt

txutxu u∂
∂

=
∂

∂
= ρρ ��  (1) 

with simpler form as 

 ,)),((),( ′′= txuMtxu u��ρ  (2) 

where uM  is the appropriate modulus related to the density ρ through the phase velocity. 
Here the finite-element solution of simple wave equation with the boundary conditions 

 0),(),0( == tlutu  and initial condition 0)0,( =xu is reviewed. The PDE (2) is our 
finite-element model problem. 

The difficulty is the requirement that a solution u(x,t) to equation (2) satisfies the 
differential equation at every point x, lx <<0 , is too large. To overcome this difficulty, 
we shall reformulate the boundary-value problem in a way that will admit weaker 
conditions in the solution and its derivatives. Such reformulations are called weak or 
variational formulations of the problems. One weak statement of the model problem 2 is 
given as follow: find the function u(x,t) such that the differential equation, together with 
boundary conditions, are satisfied in the sense of weighted averages (Becker, 1981). By 
the satisfaction of all “weighted averages” of the differential equation, as Becker (1981) 
defines, we require  

 ( )( )0
( , ) ( , ) ( ) 0,

l

uu x t M u x t v x dxρ ′′− =∫ ��  for all Hxv ∈)( . (3) 

v(x) belongs to class H (Linear Hilbert space) and has zero values at x=0 and x=l (the 
boundaries). The first derivative of such Hilbert functions v(x) is square-integrable 

∞<′∫ dxxv 2)(( . Many authors called this v(x) the weighting function. Taking 

integration by parts for equation (3) yields 

 dxtxuMxvdxtxuMxvdxtxuxxv
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uu∫ ∫ ∫ ′′−′=
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),()(),()(),()()( ��ρ . (4) 

It is clear that if equation (3) is true, there can be no portion of finite element length of 
the interval lx <<0  within which the differential equation (2) fails to be satisfied. If 
function u(x,t) satisfies equation (3), it will satisfy equation (2) as well. Becker (1981) 
states that for having a symmetric weak formulation we assume that the solution 
functions u(x,t) also belong to class H. Now we choose a set of basis orthogonal functions 
for H such that every function in H can be expressed as a linear combination of such 
basis functions. Becker (1981) represents v(x) in the form  
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where the coefficients ia  are given by 

 dxxxva
l

ii )()(
0∫= ψ . (6) 

If we take only a finite number N of terms in the series 5, then we will obtain an 
approximation of )(xvN  of v(x): 
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The N basis functions { })(,),(),( 21 xxx Nψψψ … define an N-dimensional subspace NH of 
H. After setting the weighting functions as a linear combination of basis functions; we are 
now ready to consider the Galerkin method for constructing an approximated solution to 
the variational boundary-value problem (equation (3)). Becker (1981) says that the 
Galerkin method consists of seeking an approximate solution ),( txuN  to equation (3) in 
subspace NH rather than in a whole space H of the form  

 )()(),(
1

xtdtxu i

N

i
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=

≅ . (8) 

The coefficients di(t) take on the value of the displacement u at a discrete number of 
nodal points (points Ni ,,1"= ). 

For a better understanding of )(xvN , suppose the value of )(xvN  at nodes 1, 2, and 3 
are 0.9, 0.7, and 0.2, respectively, with basis functions as in Figure 2b. Substituting these 
values into equation (7) gives ),(2.0)(7.0)(9.0)( 321 xxxxvN ψψψ ++=  so that these 
three components combine to give the continuous piecewise-linear function shown in 
Figure 3a and the piecewise-linear function )(xvN  has the form of Figure 3b. In the 
Galerkin method the solution function u(x,t) is approximated by piecewise-linear 
functions )(xvN , with values coinciding with those of u(x,t) at the nodes, the result is a 
polygonal function which closely resembles u(x,t). This is the piecewise-linear 
interpolation of the exact solution u(x,t). As the mesh is refined (i.e., as the number of 
elements is increased), the finite-element interpolant becomes progressively closer to 
u(x,t) (see Figure 3c). 
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FIG. 2. (a) A simple 1D domain mesh (b) Example of finite-element basis functions (both, after 
Becker, 1981). 
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There is no need for weighted function v(x) to be expressed by N-dimensional basis 
functions{ })(,),(),( 21 xxx Nψψψ … . Many authors consider them as separate sets (Bathe, 
1996; Hughes, 1987; and Marfurt, 1984). Marfurt (1984) states that choosing weighting 
functions as linear combination of basis functions such that the weighting and basis are 
identical, generates the Galerkin formulation of the finite-element method. Marfurt 
(1984) also mentions while the Galerkin method of setting the weighting function v(x) 
equal to that of the basis functions iψ  has been among the most popular finite-element 
techniques, there is no compelling reason to do so. Furthermore, there is no compelling 
reason to use the same iψ  in evaluating the mass, damping, stiffness, and load matrices. 

Substitution of the expansion of ),( txuN  and )(xvN , equations (7) and (8), into 
equation (4) results in 

 [ ] [ ] 0)()()()()( =







′′+∑ ∑ ∫∫∑

j j
jjijji

i
i dxmxtddxxxa ψψρψψ �� . (9) 

This is the same result as (Kay and Krebes, 1999). Note that in getting this result the 
boundary values are already applied. Since the functions v(x), and thus the coefficients ia , 
are arbitrary, the expression in the brackets of equations (9) must equal zero. The 
structure of equation (9) can be written in more compact form as 

 0)(
11

=







+∑∑

==
jij

N

j
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N

i
i dKdMa �� , (10) 

whose M and K matrices are  
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 (11) 



Review of the finite-element method 

 CREWES Research Report — Volume 15 (2003) 7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 3. (a) ),(2.0)(7.0)(9.0)( 321 xxxxvN ψψψ ++= (b) piecewise-linear finite-element 
representation of the function v N(x) (both, after Becker, 1981). (c) Local linear interpolation of 
smooth function u. 
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The resulting ordinary differential equations in time for the unknown displacements at the 
nodal points can be written as 

 0)()( =+ tKdtdM �� . (12) 

The matrices M and K are called mass and stiffness matrices, respectively. Equation 
(12) is the correspondence finite-element equation. (The terms mass and stiffness matrix 
are misnomers for the acoustic wave equation where the reciprocal of the density is 
actually included in the stiffness matrix and the reciprocal of stiffness in the mass matrix 
(Marfurt, 1984).) 

Calculating the mass matrix M, from equation (11), leads to a sparse matrix as in 
Figure 4. 
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FIG. 4. Cartoon of mass matrix M assembly in 1D (After Kay, 1996). 

Considering a source F and a damping term C in wave equation, the corresponding 
finite-element equation becomes  

 .FKddCdM =++ ���  (13) 

Equation (13) is used for the finite-element model of wave equation by Smith (1975), 
Jianlin (1994), Kay (1999), Hughes (1987), Cohen (2000), Sullivan (1983), and Marfurt 
(1984), among others. The initial-value problem for equation (13) consists of finding a 
displacement, d = d(t), satisfying equation (13) and the given initial data: 

 
.)0(

,)0( 

0

0

vd

dd

=

=
�  (14) 

Here we try to present a finite-element solution of equation (12). In this regard, we 
need to define the basis functions then construct the stiffness and mass matrices. As 
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mentioned above, finite–element methods assume that the solution can be represented 
with N basis functions enumerated as iψ . These functions are chosen to be zero outside 
some finite interval. In addition, if the iψ  has the value of unity at one node (defined 
later) in the computational mesh and zero at every other node, a one-to-one 
correspondence between basis functions and the grid nodes results. Kay (1996) also 
mentions that the iψ  are chosen to be sufficiently “smooth” such that all integrals will 
exist. The main idea as Becker (1981) says, is that the basis functions iψ  can be defined 
piecewise over subregions of the domain called finite elements and iψ  can be chosen to 
be very simple functions such as polynomials of low degree.  

Constructing such a set of piecewise basis functions, as Becker (1981) states, we first 
partition the domain X (the interval lx <<0 ) of our problem into a finite number of 
elements. Figure (2a) shows, for example, the domain of our model problem.  

Within each element, certain points are identified, called nodes or nodal points, which 
play an important role in the finite-element constructions. The collection of elements and 
the nodal points making up the domain of the approximate problem is sometimes referred 
to as a finite-element mesh. The basis functions should be smooth enough to be members 
of a Hilbert space. One very simple sample set of basis functions for the domain showed 
in Figure (2a), is shown in Figure (2b).  

If the coordinates of the nodes are denoted  4), 3, 2, 1, ,0( =ixi then the basis functions 
shown for 3 2, ,1=i are given by 

 ,

  and   for                     0        
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where 1−−= iii xxh  is the length of element iΩ . The first derivatives of basis functions 
also can be calculated very easily. Considering equation (11) the Mass and Stiffness 
matrices can be computed. 

Solving the wave equation (12) and finding mass and stiffness matrices by 
constructing the basis functions, equation (12) may be cast into the form 

 ))(()( 1 tKdMtd −= −�� . (16) 

The development of boundary-value problems describing physical phenomena in two 
dimensions follows closely the one-dimensional treatment given above, differing only in 
aspects dictated by the higher dimensionality. 
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2D Spatial Discretization  

In two dimensions, the domain is discretized into element domains similar to the 1D 
case. In two dimensions the element domains might be simply triangles and quadrilaterals  
(Figure 5). Nodal points may exist anywhere on the domain but most frequently appear at 
the element vertices and interelement boundaries and less often in the interiors (Hughes, 
1987). 

 

FIG. 5. 2D domain and 2D mesh for finite-element spatial discretization (after Hughes, 1987).  

In the 1D domain in equation (14), we introduced a set of basis functions as linear 
functions xaax 21)( +=ψ . For generalizing the concept to 2D, Becker (1981) considers 
the linear function 

 yaxaayx 321),( ++=ψ . (17) 

This function determines a plane surface. The use of such a basis function on a 
triangle element will result in the approximation of a smooth function v(x,y) (that we had 
before as weighting functions) by a planar function, 

 




≠
=

=
           ji  if           0

  if            1
),(

ji
yx iiiψ  (18) 

for ),( 11 yx as coordinate of each node in finite-element mesh. The basis functions 
),,2,1)(,( Niyxi …=ψ  are constructed in the same manner as described for 1D. The basis 

functions corresponding to adjacent elements in the mesh are simply patched together to 
produce a pyramid nodal point in the mesh (Becker, 1981).   

There are many mechanical engineering software packages that solve boundary value 
problems by finite-element methods. Including MSC.Patran and NISA II/Display III. 
Figure 6 is a 1D section of a 2D finite-element solution to a sample wave propagation 
executed by NISA II. 

The generalization of the finite-element method discussed to three dimensions is 
theoretically simple, though computationally more expensive (Marfurt, 1984). 
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a(t+∆T/2)          time a(t) 
0.00E+00 0.00E+00 0.00E+00 
-7.82E-02 1.00E-01 1.01E-01 
-1.04E-01 2.00E-01 1.35E-01 
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4.16E-02 4.00E-01 -5.37E-02 
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FIG. 6. 1D finite-element solution to wave equation in an elastic (Isotropic) material. The blue plot 
indicates the initial wavelet and the red plot indicates the wavelet after half-period of initial wave-
length in the centre point a disc defined as initial problem. Boundary and initial value both were 
set to zero. This is 1D section of 2D finite-element solution of a sample wave propagation, 
Executed by NISA II/Display III software. Displayed data table shows 1D numerical values. 
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Temporal Discretization 

There are different ways to solving the time-step equation (15). Many authors use 
different numerical methods for solving this ODE (Ordinary Differential Equation). 
Smith (1975) uses a numerical solution using the Runge-Kutta algorithm, but there are no 
details of his solution in his paper. Runge-Kutta is a numerical method for solving ODE 
that does not use the explicit evaluation of the derivatives (Ambramowitz and Stegun, 
1970). A brief summery of the Runge-Kutta method is found in Appendix B. 

Becker (1981) presents a finite–difference solution for the time-dependent heat 
equation. The heat equation is very similar to wave equation. The heat equation and its 
finite-element model are 

 ( )),(')(),(),( txuxk
xt

txuctxuc
∂
∂

=
∂

∂
=�� , (19) 

 0=+ KuuC � . (20) 

The time-step solution for the heat equation will hold for the wave equation with some 
slight modification. Becker (1981) states that by using the finite-element method, we 
have succeeded in reducing the given initial-value problems (19) to the system of 
ordinary differential equation (20). Since we have not yet discretized the behaviour of Nu  
in time, equation (20) is referred to a semi-discrete finite-element approximation. To 
obtain a fully discrete approximation, we must now introduce an approximation of the 
behaviour of )(tu  in time. Becker (1981) outlines one of the simplest methods, forward 
finite-difference approximation. The time domain Tt ≤≤0  is divided into k equal 
intervals of length ./ kTt =∆  At t = 0, the solution is known: utu ˆ)( = .To advance the 
solution in time from tnt ∆=  to tn ∆+ )1( the forward finite-difference operator is used 

 );(u     ,)( n
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t

uu
dt

tndu nn

∆=
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−

≈
∆ +

 (21) 

then equation (20) leads to the algorithm 
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11
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nnn

uKtCIu
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∆−=

∆−=−
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Since u(0) is known, 1u can be calculated using equation (22). In this way we integrate 
the solution in time from t = 0 to tkt ∆=  for any desired number of time steps. It should 
be noted that for a given mesh size N, a limitation on the time-step size t∆  is needed in 
order for this scheme to be numerically stable. 

Taking the same steps as Becker (1981) for wave equation, and using the centered 
second finite-difference operator  
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 ,2 112
2

2
−+ +−≈∆ nnn uuut

dt
ud  (23) 

equation (16) becomes 

 1121 )2( −−+ −∆−= nnn uuKMtu . (24) 

So the solution in time for any number of time steps is achieved. 

Strange and Fix (1973), in solving the heat equation with finite-element methods, also 
uses Galerkin method; and for solving the time-dependent equation (20), they state that: 

“It is natural to ask why finite-elements are not used also in the time direction. This 
has certainly been attempted, but not with great success and in fact a straightforward 
application of the Galerkin principle may couple all the time levels, and destroy the 
crucial property of propagation forward in time”. 

In the time-step solution for equation (20), Strange and Fix (1973) analyze the Crank-

Nicholson scheme, which is centred at tn ∆+ )
2
1(  and therefore achieves second-order 

accuracy in time: 

 0
2

11

=
+

+
∆
− ++ nnnn uuK
t

uuC . (25) 

Rewritten, the approximation 
1+nu   is determined by 

 .
22

1 nn utKMutKM ∆−
=

∆+ +  (26) 

Strange and Fix (1973) say that in an actual computation, the matrix on the left can be 
factored by Gauss elimination into TLL , where L is Cholesky’s lower triangular matrix, 
and then 1+nu  would be computed at each step by back substitutions, 

 2/11T2/1           ,
2

+++ =
∆−

= nnnn uuLutKMLu . (27) 

Strange and Fix (1973) state that because the coefficient of equation (20) is time-
dependent, then in the strict Galerkin theory the mass and stiffness matrices  must be 
computed at each time step. Now it becomes clear that why the implementation of finite-
element method in wave equation is so hard.  

Thornton (1982) takes the same finite-element procedure for solving the heat equation 
(19) and gets the finite-element equation (20). He also uses the finite-difference operator 
for solving the time-dependent part of the heat equation. 
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FIG. 7. The explicit finite-element method for wave equation (after Hughes, 1987). 

Hughes (1987) in solving the wave equation by finite-element also drives equation 
(13) and states that the most widely used family of direct methods for solving equation 
(13) with initial conditions (14), is the Newmark family, which consists of the following 
equations: 
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where nnn avd  and ,,  are the approximations of )( and ),(),( nnn tdtdtd ��� , respectively. 
Equations (29) and (30) are finite-difference formulas describing the evolution of the 
approximate solution. The parameters β and γ determine the stability and accuracy 
characteristics of the algorithm under consideration. Equations (28) to (30) may be 
thought of as three equations for determining the three unknowns 111  and ,, +++ nnn avd . It is 
being assumed that nnn avd  and ,,  are known from the previous step’s calculations. 
Hughes (1987) summarizes the explicit finite-element method for the wave equation in 
Figure 7 where the ωh is the weighting function (as defined in previous parts). Hughes 
(1987) states when the time step restriction is not too severe, as is often the case in elastic 
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wave-propagation problems, the central finite-difference method is generally the most 
economical direct integration procedure and is thus widely used. Hughes (1987) discusses 
alternative approaches from the Galerkin and Newmark methods, for solving the time-
step of the wave equation using the finite-element method, including: the Linear 
Multisteps (LMS), and Houbolt methods; Collocation Schemes; the α-Method, the 
Wilson-θ method, the Fox-Goodwin method, and the predictor-corrector method, which 
all are all weighted residual time integration schemes. All mentioned weighted residual 
time integration schemes lie in a grey area between finite-element and finite-differences 
methods (Bathe, 1996; Zeinkiewicz, 1997; and Marfurt, 1984). 

Marfurt (1984) uses a three-point scheme for discretizing the homogeneous time 
dimension and states one can apply the temporal basis functions for ODE equation (13) 
(Zeinkiewicz, 1977). 

WAVE PROPAGATION IN LINEAR VISCOELASTIC MEDIA 

Viscoelasticity 

All we have shown up until now has been in elastic media, but there is also the finite-
element solution for wave propagation in viscoelastic and anisotropic media. Kay and 
Krebes (1999) apply the finite-element method to a solution of seismic wave motion in 
linear viscoelastic media. First we’ll discuss viscoelastic media. Zienkiewicz (2000) 
characterizes viscoelastic phenomena by the rate at which inelastic strains develop 
depends not only on the current state of the stress and strain but, in general, on the full 
history of their development. Thus, to determine the increment of inelastic strain over a 
given time interval (or time-step), it is necessary to know the state of stress and strain at 
all preceding times. Kay (1996) describes the stress-strain relation in viscoelastic media 
as: 

 ),'()'()(
0

tdRttt
t

∫ −= εσ . (31) 

where σ(t) is stress, ε(t) is strain and the tensor R(t) is the strain relaxation function (we 
will define shortly). As stated by Aki and Richards, the R(t) is the characteristic 
relaxation time for strain under an applied step in stress. If at t = 0 the system goes from a 
state of no strain to a state with some small but non-zero strain, then the stress for any 
time after t = 0, is given by this convolution of the strain history with the relation 
function. Kay (1996) shows that an integral form of the stress-strain behaviour in a 
viscoelastic media can be written in a convolution form as: 

 '
'

)'()'()(
0

dt
dt

ttdtRt
t −

= ∫
εσ . (32) 

Kay (1996) states that there is a one-to-one correspondence between the stiffness 
matrix of elastic theory and the relaxation function here. Bland (1960) states that the 
Laplace transform of the viscoelastic problem will formally have the same form as the 
elastic problem. The terms that correspond to the elastic constants appear as functions of 
the Laplace transform parameter, t. Bland (1960) also shows that the familiar decoupling 
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of SH and P-SV waves for elastic media holds for linear viscoelastic media too. Kay and 
Krebes (1999) say the term viscoelastic can apply to problems in any number of 
dimensions, whether acoustic, antiplane-strain (SH waves), or with multiple degrees of 
freedom at each point and exhibiting coupled P-SV waves. 

Kay (1996) states that a generalized Maxwell model composed of components has a 
discrete relaxation spectrum with 

 )()(
1

/ tHeaMMtR
m

j
N

i

t
jr 








+= ∑

=

− τδ , (33) 

where rM  is the relaxed modulus and uM (in equation (2)) is equal to the sum 
MM r δ+ , and H(t) is the Heaviside step function (Bland, 1960; Ch. 1). For this form of 

R (t) (equation (33)), the stress (equation (32)) can be expressed as  

 







−′= ∑

=

n

j
ju XtuMt

1
)()(σ , (34) 

where the jX  are the memory variables. Kay (1996) defines memory variables in terms 
of the strain as 

 ∫ ′= −−t t

uj

j
j due

M
Ma

X j

0

/)( )( ττ
τ
δ ττ . (35) 

This expression is equivalent to the differential equation 

 )(1 tu
M

Ma
XX

u

j
j

j
j ′=+

τ
δ

τ
� . (36) 

Spatial discretization for viscoelasticity  

Kay and Krebes (1999) use the following wave equation in 1D heterogeneous medium 

 ),(),()( ′= txtxux σρ �� , (37) 

where ),( txσ  is stress. It is the same form as we stated in equation (2) for elastic media, 
because for a single degree-of-freedom, strain is equal to ),( ′txu . Note that for elastic 
media 0≡Mδ , the equation of motion has the same form as equation (2). So all the 
results for viscoelastic media can also be applied to elastic media. 

Kay and Krebes (1999) consider the equation (34) for stress and substitute that into 
equation (37). Repeating the Galerkin analysis, multiplying by the weight function v(x), 
(as shown above in elastic media) yields to similar equation as equation (4), with the 
form  
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Using the memory variable jX , Kay and Krebes (1999) presented two methods of 
spatial discretization using the memory variable jX . Here we just discuss one of those 
methods. This discretization scheme is analogous to equation (7) approximating the 
memory variable jX  as  

 )(
1

xX i

N

i
ij ψξ∑

=

≅ . (39) 

These expansions are substituted into equation (36) and a similar Galerkin analysis is 
applied to equation (36). The second-order ordinary differential equation in d�� (in 
equation (13)) is coupled to two first-order differential equations in d and v 
if vddtd =)/( . Repeating the Galerkin analysis using this expansion for jX will result in 
an ODE for d (t). Then the system of equations can be summarized as  
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where 
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Details can be found in Kay (1996). In addition to the spatial discretization presented 
above, some method of advancing the solution in time is required, and the resulting 
scheme must be shown to approximate the solution of the continuous equations.  

As mentioned before applying the spatial discretization (39) to wave equation (37) 
resulted in an ODE in time domain. Kay and Krebes (1999) use a centred finite-
difference operator to approximate )(td�� . They discretized time t in equal steps of t∆ , and 
a superscript k denotes evaluation at time as tkt ∆= . With this notation, Kay and Krebes 
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(1999) propose finite-element in space and finite-difference in time. Their (FE/FD) 
scheme is  

 .).(
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1.)()2.(. 2/12/1211
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kkkk
j

KdKtddMdM ξξδ  (42) 

Solving the ODE resulting from equation (40), Kay and Krebes (1999) also used a 
sixth-order Runge-Kutta scheme with adaptive step-size control (they also mention the 
method of Kjartansson (1997) can be used). They compared the results from equation 42 
solved by the Kjartansson method to those from Runge-Kutta method base on application 
of the “method of lines” (Ames, 1992). Agreement between the two different solution 
methods increases confidence in the results. In this way, Kay and Krebes (1999) showed 
the accuracy of their method and also showed their solution is also independent of the 
memory variable formulation. Results in homogeneous medium also agree with the 
frequency domain solutions of Kjartansson’s constant-Q method (for more detail see Kay 
(1996)). 

CONCLUSIONS 
Many of the concepts associated with finite-element methods are more intuitive than 

those in finite-difference or spectral methods, but the implementation is more 
complicated for simple one-dimensional problems. However, for higher dimensionality 
and complex geometry, finite-element pays for extra the work. Irregular geometries and 
inhomogeneous media that represent realistic geological structures can be handled by the 
finite-element method better that other methods like finite-difference 

On the basis of the concept of the principle of Galerkin variational method of initial-
boundary-value problems, the finite-element solutions for acoustic and elastodynamic 
transient problems have been successfully formulated by many researchers. Kuo (1982) 
states the finite-element method as developed provides advantages over the more 
conventional finite-difference methods when applied to exploration problems for: (1) 
simple and accurate modelling of arbitrary seismic sources and source arrays; (2) ease of 
applying homogeneous and inhomogeneous boundary conditions of any type; (3) great 
flexibility in modelling targets of any irregular shape as well as the effects of irregular 
topography and weathering zones; and (4), perhaps most importantly, errors are averaged 
over the elements throughout the domain in question. 
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FIG. A1.The process of finite-element analysis (after Bathe, 1996). 
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APPENDIX B 

Runge-Kutta method  

The Runge-Kutta method is the most accurate numerical algorithm to solve Ordinary 
Differential Equations. This method fits a polynomial to the curve, which it uses to 
estimate the new y value. This is an extension on Euler's improved method. The Euler 
method can be considered a first-order Runge-Kutta method. The fourth-order Runge-
Kutta method works by evaluating the function at four separate points and takes the 
average of those four points. The Runge-Kutta method provides improved accuracy with 
larger step-sizes and without the need of evaluate higher differentials (beyond the first 
derivative) of the function of interest. Higher order Runge-Kutta methods evaluate the 
solution at more points (i.e., sixth-order Runge-Kutta uses six solutions), and therefore 
become more accurate. The aim of method is generating a numerical solution to an initial 
value problem of the form: 

o o

'  ( , )
( )

y f x y
y x y
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=
 

Here is a summary of the method: 
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Note that in the case where f(t,y) does not depend upon y, the above reduces to  

[1 ( ) 4 ( / 2) ( )]
6n n n n n
hy y f t f t h f t h+ = + + + + +  

which is Simpson's rule.  


