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Optimised corrections for finite-difference modelling in two 
dimensions 

Peter M. Manning and Gary F. Margrave 

ABSTRACT 
Finite-difference two-dimensional correction filters were designed by least squares 

optimisation in the frequency domain. It is shown how these spatial convolution filters 
improve responses within a specified frequency range, with the constraint of a limited 
size. Examples are used to show the improved modelling results, with displays in the 
wavenumber and spatial domains. The superiority of this method is also shown by a 
direct comparison with the established Levander method, which uses a split step and 
fourth order accurate spatial derivatives. 

INTRODUCTION 
Finite-difference modelers have always been limited by the fact that although 

frequencies in their data may be represented right up to the Nyquist frequency, the 
accuracy of the amplitudes at even small fractions of Nyquist degrades when they are 
used for modelling. Many methods have been used to enhance the accuracy of modelling 
results at higher frequencies. These include pseudo-spectral methods (Kreis and Oliger 
1972) and use of higher order derivative methods (Levander 1988). These methods all 
effectively use larger operators in the spatial domain to improve the accuracy of the 
finite-difference derivatives, however, they do not address the accuracy of the temporal 
derivative other than to take small time steps. We have suggested use of correction 
operators, that correct for both space and time finite-differences, designed in the 
wavenumber-domain (Manning and Margrave 2000), and there we applied the 
corrections in that domain. In this paper we show how these wavenumber-domain 
operators may be made into spatial operators of practical sizes when the range of the 
desired ‘flat’ frequency response is not too large (for example, to one half the Nyquist 
wavenumber). 

OPTIMUM SPATIAL DESIGN 
We have found that much improved frequency responses may be obtained with quite 

small operators, and small operators are an advantage because the problems with internal 
boundaries and edges are reduced. We have also found it practical to design these 
operators within an inherently stable choice of sample rates. This means that generally 
the higher the frequency, the more its amplitude must be enhanced, but frequencies above 
the design window may be left attenuated. 

We develop the method by beginning with a one-dimensional transform in matrix 
form, and then use this form to obtain a limited length filter with optimal frequency 
response. This is a straightforward process. The two-dimensional transform case may 
then be developed by analogous means, although the matrix manipulations are a bit 
unusual. Some of the Fourier transform matrices are represented in figures in analogue 
form, which makes the explanation more intuitive. 



Manning and Margrave 

2 CREWES Research Report — Volume 15 (2003)  

The one spatial dimension case 
The one dimensional Fourier transform may be represented in matrix format as shown 

in Figure 1. The lower frequencies (only cosines are shown, sines are done in similar 
fashion) are represented along rows in analogue fashion within the matrix. The equation 
shows how these row samples representing a single frequency are multiplied by the data 
samples and summed to give the amplitude of each frequency in the transformed vector. 

Figure 2 shows the case where the data vector is all zeros past a given point. It may 
also represent the case where, beyond a certain point, the data is unknown and hopefully 
won’t contribute much to the spectrum. In this case a transform may still be found, but 
the cosine curves within the transform matrix may be cut off to the data length, as shown 
in the figure. The equations represented in Figures 1 and 2 may be represented in 
algebraic form by the equation 

 MV T= , (1) 

where M is the Fourier transform operator matrix, V is the data vector to be transformed, 
and T is the transformed result. 

The case in which we are interested is shown in Figure 3. It is identical to Figure 2 
except that the frequency response is given, and the data vector is now an unknown filter 
that we want designed to make the equation work as closely as possible. The matrix 
equation may be represented by 

 MU D≈ , (2) 

where M is the transform matrix, U is the unknown vector or filter, and D is the desired 
frequency response. A solution for U can then be found in a least squares sense by 
applying standard inverse theory. The solution is given by 

 ( ) 1T TU M D M M
−

≈ , (3) 

where the superscript T indicates transpose and -1 indicates inverse. Note that if the 
unknown filter is not truncated, the MTM matrix is the identity matrix, the inverse is also 
the identity matrix, and the solution is trivial. When the unknown filter is truncated the 
Fourier components are not orthogonal, and the solution is not trivial. 

The two spatial dimensions case 
The two dimensional Fourier transform operates, in this case, on the surface with the 

independent variables x and z, and is transformed into the surface with the independent 
variables specified as the x and z wavenumbers. A four dimensional matrix may be set up 
to do this transform. 

In Figure 4, a pseudo matrix equation to obtain a few of the lower frequency two 
dimensional Fourier coefficients is shown. This is analogous to the one dimensional 
equation in Figure 1. The four dimensional transform matrix has been specified here as 
the matrix of matrices shown on the left. Next to it is the input spatial data set, and to the 
right of the equal sign is the output data set. The transform is done by overlaying each 
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elementary Fourier component matrix (within the super matrix on the left) on the data 
matrix and multiplying (element-by-element) and summing to obtain a single output 
cosine term within the matrix on the right side of the equation. Each elementary matrix is 
labelled by the frequency in x and z, and also by the analogue frequency traces along each 
edge. We have called this a pseudo matrix equation because each sub matrix acts like a 
row in the equation in Figure 1. The equivalent 2D Fourier transform for the cosine 
amplitude Cm,n is given by 

 ( ) ( ), , ,m nC Emn x z S x z dxdz= ∫∫ , (4) 

where 

 ( ) ( ) ( ), cos 2 cos 2Emn x z mx nzπ π =   , (5) 

the two dimensional function of the cosines multiplied together. This is constructed 
before multiplication with the data surface S, and the result is integrated (summed). 

Figure 5 shows the partial 2D Fourier transform, analogous to Figure 2. This 
demonstrates the case where the surface (or filter) is limited in size. In practice these 
matrices will be small, perhaps as small as 3x3, which represents a final filter size of 5x5. 
The number of these matrices may be large, perhaps containing frequencies up to half of 
Nyquist, although each frequency is represented by only its leading few samples (in the 
first case mentioned, only the leading 3 samples). 

Figures 6 and 7 show the steps taken to reform the matrices into standard shapes. 
Figure 6 shows the stage where the elementary Fourier matrices have been resized into 
long row vectors, and the surface has been resized into a long column vector. This 
reshaping is legitimate as long as it has been done consistently, with the same pairs of 
numbers multiplied together before adding to the same sum. 

Figure 7 shows how the matrices have been resized into a standard matrix equation 
format. At the same time, analogous to the difference between Figures 2 and 3, the equal 
sign has been changed into an approximation sign to indicate that the column vector on 
the right is the known (desired) response, and the column vector which is part of the 
matrix multiplication is the unknown filter. This fits the format of equation (2), which has 
the solution given by equation (3). This solution is a vector which may be resized in 
reverse fashion into a 2D filter with a least squares optimal frequency response. 

In practice, the elementary matrices shown in analogue form are modified slightly to 
represent the analysis of a two dimensional filter that is zero phase in both directions. The 
Fourier components may be obtained from little more than one quarter of the values in a 
filter of this type, and they are guaranteed to be all cosines, but the coefficient matrices 
must be modified to allow for the duplicated samples in the other three quadrants. 

Design Examples 
The section following this one compares the Levander finite-difference scheme and 

the correction filter as optimised by the technique described above. Some of the figures 
from this section are good examples of the design techniques described here. 
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One set of comparisons shows the wavenumber response of individual terms of the 
wave equation. The ideal responses are from the ratios of sinc functions by which the 
theory was developed. These may be compared to the filters defined in space that are 5 
by 5 in total size, and then to the filters that are 9 by 9 in total size. These filter sets are 
both optimized in the wavenumber domain from zero to ½ Nyquist. 

In the last row of the table, Figures 21 and 22 show the total effect of complete sets of 
5 by 5 and 9 by 9 corrections on a model after 100 steps. The smaller ring is pure shear, 
and the larger ring is pure compressional energy. 
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Comparison of the individual term response in the wavenumber domain shows the 
expected results of a better fit with a larger pattern. It seems a bit surprising that the 5 by 
5 terms are as good as they are. However, the 9 by 9 terms are a little better within the 
design zone, and significantly better just beyond it. This probably results from the fact 
that the slopes near the edge of the design zone are represented more accurately. It is not 
yet clear which effect causes more of the improvement of the correction. 

Comparison of the practical modelling results in Figures 19, 21 and 22 shows 
significant improvement with the smaller spatial operator, and even more with the larger 
operator. The smaller operator brings the large ring of the pressure wave much closer to 
the zero phase character of the initial wavelet, and brings the small ring of the shear wave 
into a circle. The larger operator brings the pressure wave to zero phase, and the shear 
wave is made more compact and shows its zero phase character as well. 

OPTIMUM DESIGN VS 4TH ORDER DERIVATIVES 
This section compares the effects of the correction operators shown above, and the 

fourth-order second derivatives used in (for example) Levander (1988). Both systems 
(and others) ultimately use an extended set of sample points in space (extended beyond 
that required for the minimal 3-pt second-derivative approximations) to obtain more 
accurate modelling results. The method used will be to restrict the correction operator in 
space to the same extended number of samples required for the fourth order operators, 
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and compare results. The cases of uncorrected modelling and longer correction operators 
will also be shown. 

The Levander modelling scheme 
The Levander scheme uses a split time step system, where the second-order wave 

equation is split into two first-order equations, and each of these equations is stepped 
through a time interval of one-half of the time sample rate. It also uses a higher order 
approximation for the continuous spatial derivatives. Instead of using the first-order 
operator of [1,-1] for a derivative, the operator [-1/24, 9/8, -9/8, 1/24] is used for each of 
the two steps. For comparison purposes, we consider this to be the first order operator 
convolved with a correction filter of [-1/24, 13/12, -1/24]. 

The correction filters are effectively applied to both stages of the split-step process, 
and so the complete second-derivative corrections are a combination of two stages of the 
first-order corrections. The equivalent correction in the direction of the axes (either x or 
z) is [1/576, -13/144, 113/96, -13/144, 1/576]. The equivalent correction for the cross-
term calculations is a symmetric square function, 

 

1 13 1
576 288 576

13 169 13
288 144 288
1 13 1

576 288 576

 − 
 
 − − 
 
 −
  

. (6) 

The first type of operator is the longest at 5 points, requiring two extra points in each 
direction for the correction to be effective. This must be considered near any boundaries 
because the extra input points are required in both the x and z directions. 

Figure 8 shows all of the displacements used as input points for the Levander 
acceleration in z. The 2 2/zU z∂ ∂  term has input from the column of z displacements. The 

2 2/zU x∂ ∂  term has input from the row of z displacements, and the 2 /xU x z∂ ∂ ∂  term has 
input from all of the x displacements shown. In contrast, the second order derivatives plus 
optimum corrections developed in this paper use an array of points for every term that 
contributes to the acceleration. 

Examples of Levander and correction filter effectiveness - wavenumbers 
The cases here all have spatial sample rates of 6 metres. These presentations are all in 

the wavenumber domain, where the enhancement contour levels must be compared to 
judge effectiveness. A quarter circle centred on the zero wavenumbers is marked because 
this is the zone where the response was optimized using equation 3, and with the matrices 
developed as in Figure 7. The functions should be compared in this zone, covering an 
area from the origin to halfway to the Nyquist wavenumbers in each direction. 

The first case presented is for the second derivative in the z direction of the z 
displacement. The ideal correction is shown in Figure 9, where a pressure wave velocity 
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of 2000 and a time sample rate of .001 have been specified. The Levander fourth order 
correction multiplier term is shown in Figure 10. This operator is one column of 5 rows, 
and appears to be a rough match to the ideal case. 

The optimised operators for the case, developed from the theory of this paper, are 
shown in Figures 11 and 12. The designs match quite closely the zone within the marked 
quarter circle. The operator of size 5 by 5 was chosen to use the same number of extra 
points required by the collection of Levander operators. It obviously matches the details 
of the ideal enhancement much more closely than does the Levander operator. The 9 by 9 
sized operator is an even better match, although it will require more extra points beyond 
any boundaries. 

The second case presented is for the second derivative of either the x or z component 
with respect to both x and z. The ideal correction multiplier term is shown in Figure 13. 
The Levander correction term is shown in Figure 14, and it has the nearly circular form 
of the ideal case. The 5x5 operator designed for the same case is shown in Figure 15, and 
can be seen to have a shape closer to the ideal. The operator designed for the 9 by 9 size 
has the response shown in Figure 16, and has an even better fit at the larger 
wavenumbers. 

The last case presented is for the second derivative in the z direction of the x 
displacement. The ideal correction-multiplier term is shown in Figure 17, where the 
relevant shear velocity of 1000 and a time sample rate of .001 have been specified. The 
Levander correction in Figure 10 applies to this case too, because it is determined only by 
the value of the second derivative. The ideal correction is distinct for this case because it 
allows for the inaccurate second derivative in time, and is affected by the shear velocity 
and time sample rate. The optimised operator responses are not shown, but they are good 
approximations at the lower wavenumbers. 

Examples of Levander and correction filter effectiveness – space 

The natural test of a modelling system is to apply it under controlled conditions. 
There, the results after many successive steps will show if the small errors of each step 
are significant enough to accumulate, or by contrast, are a type which tend to cancel out 
and still give accurate end products. The expanding pressure and shear rings, which are 
shown at their starting positions in Figure 18, have been found useful for testing the 
effectiveness of our modelling systems.  The two pressure rings both have a zero-phase, 
symmetric wavelet. 

The first test used an uncorrected second order finite-difference modelling program to 
propagate the rings through 100 steps of .001 seconds each. The output is shown in 
Figure 19. The numerical dispersion and non circular shape of the smaller shear ring is 
quite obvious, and the larger pressure ring can be seen to deviate from its original zero 
phase (symmetric) shape. 

The second test in Figure 20 shows the results of the simulated Levander-style wave 
propagation. The pressure wave has been propagated more accurately as is evidenced by 
the ring being almost zero phase (symmetric). The shear wave wavelet has been 
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improved in quality but the wave front has a more obvious deviation from circular. That 
the shear wave propagation here is less than ideal is not surprising, since the system was 
not designed for shear waves. 

The next test in Figure 21 shows propagation with the optimised correction operator of 
size 5 by 5. The pressure ring here is even closer to zero phase. The shear ring is almost 
perfectly circular and compact, but not zero phase. 

The final test in Figure 22 shows the use of the optimised correction operator of size 9 
by 9. Both of the rings are circular and almost perfectly zero phase. 

Discussion 
The superior effects of our optimal corrections may be attributed to a number of 

reasons, theoretical and practical. The optimal corrections: 

• are designed for a specific frequency range. 

• consider the distortions on the time side of the equations. 

• make use of all the input data points which must ultimately be supplied 

CONCLUSIONS 

For the same number of points (5x5), our correction operators perform significantly 
better than the Levander operators. With a 9x9 operator, the performance is better yet. 

The modelling system may be further improved by using even larger operators, but 
more effort is required to provide realistic data points from beyond the edges of each 
constant velocity area. 
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FIGURES 

 

FIG. 1: Fourier transform by a matrix equation (cosines shown). 

 

FIG. 2: Fourier transform of a partial (shortened) data vector. 
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FIG. 3: The matrix equation similar to Figure 2, where the frequencies are specified and the filter 
must be designed to approximate them 

 

FIG. 4: A 2 dimensional Fourier transform by a matrix equation (cosines shown), an analogue to 
Figure 1. 
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FIG. 5: A 2 dimensional Fourier transform of a partial (length and width reduced) data vector. 

 

FIG. 6: An equivalent version of the equation shown in Figure 5, with the elementary matrices 
reformed into rows, and the data into a column. 
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FIG. 7: The equation from Figure 6 has the elementary matrices sorted into separate rows, and 
output amplitudes reformed into one column. It is in the form MU D≈ , analogous to Figure 3. 

 

FIG. 8: All the displacements which contribute to the Levander Uz acceleration at the centre. 
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FIG. 9: The ideal correction for the 2 2/zU z∂ ∂  term. 

 

FIG. 10: The fourth order correction for the 2 2/zU z∂ ∂  term. Compare to Figure 9. 
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FIG. 11: The optimum 5 by 5 correction for the 2 2/zU z∂ ∂  term. Compare to Figures 9 and 
10. 

 

FIG. 12: The optimum 9 by 9 correction for the 2 2/zU z∂ ∂  term. Compare with Figures 9 – 11. 
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FIG. 13: The ideal correction for the 2 /xU x z∂ ∂ ∂  term. 

 

FIG. 14: The 4th order correction for the 2 /xU x z∂ ∂ ∂  term. Compare with Figure 13. 
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FIG. 15: The optimum 5 by 5 correction for the 2 /xU x z∂ ∂ ∂  term. Compare with Figures 13 and 
14. 

 

FIG. 16: The optimum 9 by 9 correction for the 2 /xU x z∂ ∂ ∂  term. Compare with Figures 13 
through 15. 
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FIG. 17: The ideal correction for the 2 2/xU z∂ ∂  term. Compare with Figure 10. 

 

FIG. 18: The initial shear (left) and pressure rings, propagated in Figures 19 through 22. 
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FIG. 19: The uncorrected model after propagation through 100 time steps. 

 

FIG. 20: The model using 4th order accurate 2nd spatial derivatives. Compare with Figure 19. 
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FIG. 21: The model with corrections limited to a 5 by 5 spatial filter. Compare with Figure 20. 

 

FIG. 22: The model with corrections of a 9 by 9 spatial filter. Compare with Figure 21. 


