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ABSTRACT 

Removing reverberations or multiples from reflection seismograms has been a 
longstanding problem of exploration geophysics. Multiple reflections often destructively 
interfere with the primary making interpretation difficult. The Radon transform, which 
integrates some physical property along a particular path, will be evaluated for 
attenuating multiple.  

Multiples are periodic in the τ-p domain, and predictive deconvolution can be applied 
in the τ-p domain to suppress multiples. After NMO correction, moveout errors are 
approximately parabolic and tend to map to points in the parabolic Radon domain. The 
hyperbolic Radon transform will also map data before and after moveout correction into 
points, and multiples can be recognized in the Radon domain. The identified multiple 
energy can then subtracted from the data to improve the interpretation process. 

INTRODUCTION 

Johan Radon (1917) is credited with establishing the Radon transform, a function that 
integrates some physical property of a medium along a particular path. 

Removing reverberations from reflection seismograms has been a long standing 
problem of exploration geophysics. Multiple reflections often destructively interfere with 
the primary reflections of interest. The most robust and effective way to suppress 
multiples is stacking normal moveout (NMO) corrected seismic gathers (Foster and 
Mosher, 1992). Unfortunately, stacking does not eliminate all multiples.  

Over the years, many techniques for suppressing multiples have been tried. More 
recently, the Radon transform approaches have attracted attention. The generalized Radon 
transform integrates the data along any curved surfaces (Chapman, 1981). Particularly, 
the slant-stack (or -pτ ) transform integrates the data along planar surfaces (Treitel, et al, 
1982). Hampson (1986) applied NMO-correction to common midpoint (CMP) data and 
perform a Radon transform along parabolic stacking curve to suppress multiples in 
NMO-corrected domain. Yilmaz (1989) applied t2-stretching to the CMP data and then 
applied the parabolic Radon transform in the stretched coordinates. Foster and Mosher 
(1992) described a hyperbolic Radon transform in stacking NMO-corrected domain. 
Oppert (2002) proposed the non-hyperbolic Radon transform by taking the shifted 
hyperbola NMO equations. Thorson and Claerbout (1985), and Beylkin (1987) showed 
the least-squares solution of the discrete Radon transform. The former also gave the 
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stochastic inverse solution for the problem. Zhou and Greenhalgh (1994) showed the 
convolutional operators for the slant-stack transform and the parabolic Radon transform 
to increase the resolution. Sacchi and Tadeusz (1995) proposed an improved algorithm 
for the parabolic Radon transform to get higher resolution. 

The generalized Radon transform ( , )u q τ  is defined as 

 ( ) ( )( ), ,u q d x t q x dxτ τ φ
∞

−∞
= = +∫ ， (1) 

where ( , )d x t  is the original seismogram, x is a spatial variable such as offset, ( )xφ  is 
the curvature based on which the transform curve is defined, q is the slope of the 
curvature, and τ  is the intercept time (Foster and Mosher, 1992). 

Since the seismogram is digitally recorded, a discrete form of equation (1) is: 

 
( ) ( )( ), ,

x
u q d x t q xτ τ φ= = +∑

， (2) 

Then the inverse transforms of equation (1) and (2) are: 

 ( ) ( )( )' , ,d x t u q t q x dqτ φ
∞

−∞
= = −∫ , (3) 

or 

 ( ) ( )( )' , ,
q

d x t u q t q xτ φ= = −∑ ， (4) 

Also, we can express the Radon transform in velocity domain (Yilmaz, 1989) as follows: 

 ( ) ( )( ), , ,
x

u v d x t q v xτ τ φ= = +∑ ， (5) 

 ( ) ( )( )' , , ,
q

d x t u v t q v xτ φ= = −∑ ， (6) 

THE DISCRETE RADON TRANSFORM 

Equation (3) can be written as: 

 
' =d Lu ， (7) 

where L is the linear transformation from the -qτ  space to the offset space defined by 
equation (3), and given as follows in Fourier domain: 
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 ( ) 1
   

1
j ki q x

jk

j ,...,M
e

k ,...,N
ω φ− = 

=  = 
L ， (8) 

Assume that a CMP gather d(x,t) is the result of some transform on a function u0(q,τ) 
in the τ-q space. In fact, d(x,t) is always contaminated with additive noise n giving: 

 nLud += 0 ， (9) 

The solution for u in equation (9) is obtained by taking a least-squares approach to 
minimize the noise term n, which represents the difference between the actual data u0 and 

the modelled data u. The cumulative squared noise term, T T
0 0S = n n = (d - Lu ) (d - Lu )  

(Oppert and Brown, 2002), is minimized with respect to u0 yielding the desired 
least-squares solution (Thorson and Claerbout, 1985): 

 [ ] dLLLu TT 1−
= ， (10) 

The generalized inverse of L is thus computed to be 
1−

  
T TL L L . 

The calculation of [ ] 1−LLT  is impractical due to the large nature of the matrix and the 

instability of the inversion. Although the operator LLT  is diagonally dominant, if the 
side lobes of the matrix are significant, smearing will occur along the q-axis. 
Prewhitening the operator LLT  suppresses the side lobes and stabilizes the inversion. A 
stable solution for equation (9) is computed by Thorson and Claerbout (1985): 

 [ ] dLILLu TT 1−
+= µ ， (11) 

where the constant µ  is a damping factor incorporated to add white noise along the 
main diagonal of the inversion matrix, and I is the identity matrix.  
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THE LINEAR RADON TRANSFORM 

Theory 

 ( ) ( )∫
∞

∞−
+== dxpxtxdpu ττ ,, , (12) 

 ( ) ( )∑ +==
x

pxtxdpu ττ ,, , (13) 

 ( ) ( )∫
∞

∞−
−== dppxtputxd τ,,' , (14) 

 ( ) ( )∑ −==
p

pxtputxd τ,,' ， (15) 

The equation (1) reduces to the linear Radon transform when ( )x xφ = , where x is 
offset. Accordingly, equations (1) to (4) are reformatted as equations (12) to (15). 

For seismic exploration applications, d(x,t) can be CMP or shot gather. u(p,τ) is its 
slant-stack transform with horizontal slowness (or ray parameter) p and intercept time τ. 
Here p is used because of its specific meaning of ray parameter and is defined by  

 
x
t

v
p

∆
∆

==
θsin  , (16) 

where θ  is the incident angle from the vertical axis, v is the wave propagation velocity.  

The rho filter has to be applied before inverse mapping to restore the correct 
amplitude and phase. This work was illustrated by Zhou and Greenhalgh (1994).  

The Fourier transform of equation (12) becomes 

 ( ) ( )∫
∞

∞−
= dxexDpU pxiωωω ,, ， (17) 

Version 1: 

To obtain the proper inverse transform D(x,ω) in equation (16), the standard 
back-projection D’(x,ω) is used: 

 
( ) ( ) ( ) ( )

( ) ( )∫∫
∫ ∫∫

∞

∞−

−−∞

∞−

∞

∞−

∞

∞−

−∞

∞−

−

=

==

dpexDdx

dpdxexDdpepUxD

xxpi

xxpipxi

'

'

,

,,,

''

'''

ω

ωω

ω

ωωω
， (18) 

Now the rho filter is introduced: 
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 ( ) ∫
∞

∞−

−= dpex pxiωωρ , ， (19) 

Then equation (17) can be written as: 

 ( ) ( ) ( ) ( ) ( )ωρωωρωω ,,,,, '''' xxDdxxxxDxD ∗=−= ∫
∞

∞−
， (20) 

Here, “∗” stands for convolution with respect to the spatial variable x. Zhou and 
Greenhalgh (1994) derive the form of rho filter in case of infinite p: 

 ( ) ( )xx δ
ω
πωρ 2, = ， (21) 

Substituting equation (21) to equation (20), we have 

( ) ( )ω
ω
πω ,2,' xDxD =   

or 

 ( ) ( )ω
π
ω

ω ,
2

, ' xDxD = ， (22) 

Therefore the slant-stack transform pair in the frequency domain is 

 
( ) ( )

( ) ( )







=

=

∫

∫
∞

∞−

−

∞

∞−

dpepUxD

dxexDpU

pxi

pxi

ω

ω

ω
π
ω

ω

ωω

,
2

,

,,
， (23) 

But in practice, variable p has a limited range of [ min max,p p ]. In this case, the rho filter 

becomes: 

 ( ) ( )






=−

≠−
==

−−
−∫

   0x                     ,

0x   ,1
,

minmax

maxmin
max

min
ω

ω
ωωρ

ωω
ω

pp

ee
xidpex

xpixpi
p

p

pxi ， (24) 

When min maxp p= , the equation (24) becomes a sinc function: 
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 ( )
( )









=

≠







=

   0x                         ,2

0x   ,sin2
,

max

max

max
max

ω

ω
ω
ω

ωρ

p
xp

xpp
x ， (25) 

Version 2: 

Zhou and Greenhalgh (1994) indicate that we can perform the inverse τ-p transform 
first and then the forward transform to derive the proper inversion of the slant-stack 
transform. The inverse τ-p transform and its Fourier transform are defined as: 

 ( ) ( )∫
∞

∞−
−= dppxtputxd ,, ， (26) 

and  

 ( ) ( ) dpepUxD pxi∫
∞

∞−

−= ωωω ,, ， (27) 

Here d(x,t) is the input data and u(p,τ) is the τ-p transform. D(x,ω) and U(p,ω) are the 
Fourier transforms of d(x,t) and u(p,τ), respectively. To obtain the forward τ-p transform 
U(p,ω) in equation (26), U’(p,ω) is defined as: 

 
( ) ( )

( ) ( )∫ ∫
∫
∞

∞−

∞

∞−

−

∞

∞−

=

=

dxepUdp

dxexDpU

ppxi

pxi

'

,

,,

''

'

ω

ω

ω

ωω
， (28) 

The new function g(p,ω) is introduced: 

 ( ) ∫
∞

∞−
= dxepg pxiωω, ， (29) 

Then equation (28) can be written as: 

 ( ) ( ) ( )ωωω ,,,' pgpUpU ∗= , (30) 

In case that the spatial variable x is of infinite range, we have: 

 ( ) ( )ppg δ
ω
πω 2, = , (31) 

The τ-p transform pair in the frequency domain can be written as 
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( ) ( )

( ) ( )







=

=

∫

∫
∞

∞−

−

∞

∞−

dpepUxD

dxehDpU

pxi

pxi

ω

ω

ωω

ω
π
ω

ω

,,

,
2

,
， (32) 

In case that the spatial variable x is of finite range [xmin, xmax], we have g(p,ω): 

 ( )
( )








=−

≠−
=

0p  ,                

0p  ,1
,

minmax

minmax

ω

ω
ωω

ωω

xx

ee
pipg

pxipxi

， (33) 

If xmin=- xmax, g(p,ω) can be written as: 

 ( )
( )









=

≠







=

   0h                         ,2

0h   ,sin2
,

max

max

max
max

ω

ω
ω
ω

ω

h
ph

phh
hg ， (34) 

Comparing the two versions of the linear τ-p transforms, i.e. equation (23) and 
equation (32), the only difference is that the deconvolution in version 1 is performed on 
the inverse transform in x-direction, and that the deconvolution in version 2 is performed 
on the forward transform in p-direction. Deconvolution can improve resolution in the 
x-direction for version 1 and in p-direction for version 2. In order to attenuate noise in the 
τ-p domain, the transform pair of version 2 is preferred (Zhou and Greenhalgh, 1994).  

Slant-stack multiple attenuation 

For a one-layer model with velocity v, the traveltime equation in offset domain is: 

 
2

2 2
0 2

xt t
v

= + ， (35) 

where x is the source/receiver offset and t0 is the two-way zero-offset time. 
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(a)          (b) 

FIG. 1. A hyperbola in CMP gather (a) maps onto an ellipse in the slant-stack domain (b); and a 
straight line in CMP gather maps to and a point in the slant-stack domain. Energy tangent to the 
line B in (a) maps to the point B in (b). 

In the slant-stack domain, equation (35) is transformed to (Alam and Austin, 1981): 

 ( ) 2
0

222 1 ττ vp−= ， (36) 

Comparing equation (35) with (36) we see that the hyperbola in the (x, t) domain 
becomes an ellipse in the (τ, p) domain. The linear events in the offset space map to 
points in the (τ, p) space (Figure 1). But notice the ellipse in Figure 1b that the ellipse is 
incomplete because the offset, in practice, couldn’t be infinite. So when the data maps 
from τ-p domain back to the offset domain, amplitude smearing will occur. 

Now consider the traveltime for an n-bounce multiple in (τ, p) domain and time delay 
between successive bounces for a given trance (Alam and Austin, 1981): 

 ( ) 2
0

2222 1 ττ nvp−= ， (37) 

 ( ) 0
2
1

22
1 1 τττ vpnn −=− − ， (38) 

 

Multiples are not periodic in the offset domain. Taner (1980) first recognized that the 
time separations between the arrivals are equal along a radial direction OR in the offset 
space (Figure 2). Then Alam and Austin (1981) showed in equation (38) that all bounces 
within a reverberatory layer have the same traveltime for a given p-value, i.e. the 
multiples are exactly periodic in the (τ, p) space (Figure 2). 

A 
A

B

B 
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FIG. 2. The periodicity of multiples along radial trace OR and down p traces from Taner (1980). 

Based on the periodic property of the multiples in the (τ, p) domain, Alam and Austin 
(1981) and Treitel et al. (1982) investigated the application of predictive deconvolution in 
the slant-stack domain for multiple suppression. The shot gather in Figure 3a is 
transformed to the slant-stack domain (Figure 3c). Figure 3e is the slant-stack gather after 
predictive deconvolution. Figure 3b, d, and f are the autocorrelations of Figure 3a, c and 
e, respectively. Figure 3g shows the reconstruction of the shot gather from the slant-stack 
gather in Figure 3e. Unlike the autocorrelogram of the shot gather in Figure 3b, the 
periodic nature of the multiples in the data is pronounced in the autocorrelogram of the 
slant-stack gather (Figure 3d). Note that the periodicity of multiples changes from one p 
trace to the next. The largest period occurs along the trace that corresponds to the 
minimum p value. The autocorrelogram after predictive deconvolution shows that the 
energy in lags less than the specified prediction lag is retained, while the multiple energy 
is attenuated (Figure 3f) (Yilmaz, 1989).  
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FIG. 3. Multiple attenuation in the slant-stack domain (a) A shot gather; (b) Autocorrelogram of (a); 
(c) The slant-stack gather; (d) The autocorrelogram of (c); (e) The slant-stack gather after 
predictive deconvolution, where operator length=240 ms; (f) The autocorrelogram of (e); (g) 
Reconstruction of the shot gather from (e) given by Yilmaz (1987). 

 

THE PARABOLIC RADON TRANSFORM 

Theory 

On CMP or common shotpoint CSP gathers, seismic events are more likely to be 
hyperbolic than linear (reflections and diffractions are hyperbolic, but refractions and 
direct waves are linear). A hyperbolic Radon transform can be designed so that the 
hyperbolic events in the seismic domain map into points in the Radon domain. But the 
direct hyperbolic τ-p transform was too expensive to realize and faster method were 
sought. Errors in the moveout correction due to velocity approximations are exactly 
hyperbolic, but their small amounts of curvature may be approximated by parabolas. 
Consequently Hampson (1986) performed the parabolic Radon transform on the 
NMO-corrected offset data. Yilmaz (1989) noted that all the hyperbolic events in the 
offset domain are transformed to exact parabolas after t2-stretch is applied. 
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NMO-corrected input data 

A practical approach was presented by Hampson (1986). First, the input CMP gather is 
NMO-corrected using the hyperbolic moveout equation 

 2

2
2

n
n v

xtt −= , (39) 

where t is the recorded time, tn is the time after NMO-correction, and vn is the 
NMO-correction velocity. The resulting moveout of the events, which were originally 
hyperbolic, are now approximately parabolic: 

 2

2
2
0

2

v
xtt +=  (40) 

 2

2
2
0

2

err
err v

xtt +=  (41) 

 hyperbolicexactly  is error term ,2

2

2

2
22

err
err v

x
v
xtt +−=  (42) 

 







++= 222

2

2

2 111
vvt

x
t
t

err

err  (43) 

 







++= 222

2 111
vvt

x
t

t
err

err  (44) 

 







++≈ 222

2 11
2

1
vvt

x
t

t
err

err  (45) 

 
2

2 2

1 1
2err

err

xt t
t v v
 

≈ + + 
 

, approximately parabolic (46) 

 2qxtn += τ , (47) 

where τ is the two-way zero-offset time, and q defines the curvature of the parabola. 
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Say d(x,tn) is the NMO-corrected gather. The forward and inverse Radon transform in 
the NMO-corrected coordinates take the forms 

 ( ) ( )∑ +==
x

n qxtxdqu 2,, ττ , (48) 

and 

 ( ) ( )∑ −==
q

n qxtqutxd 2' ,, τ . (49) 

Stretching input data 

Events on the CMP gather have hyperbolic traveltimes defined by 

 2222 vxt += τ ， (50) 

where t is the two-way traveltime, τ is the two-way zero-offset traveltime, x is the offset, 
and v is the stacking velocity. 

Apply stretching in the time direction by setting 2' tt =  and 2' ττ = . Equation (50) 
takes the form 

 22'' vxt += τ ， (51) 

From equation (51) we can see that the hyperbolae are transformed exactly to 
parabolae in the stretched coordinates. Now say d(x,t’) is the t2-stretched input data. The 
mapping from the x-t’ domain to the τ’-q space is achieved by summing over offset: 

 ( ) ( )∫
∞

∞−
+== dxqxtxdqu 2''' ,, ττ ，  

or  

 ( ) ( )∑ +==
x

qxtxdqu 2''' ,, ττ ， (52) 

And the inverse transforms are  

 ( ) ( )∫
∞

∞−
−== dqqxtqutxd 2'''' ,, τ ，  

or  
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 ( ) ( )∑ −==
q

qxtqutxd 2'''' ,, τ ， (53) 

From equation (51), we know that the physical meaning of q is taken as the square of 
the horizontal slowness, or the inverse of the square of stacking velocity (Yilmaz, 1989). 
But, in practice, equation (53) doesn’t give the exact inversion of the Radon transform. 

To obtain superior image resolution in the transform domain, a similar approach as 
was used with the linear Radon transform, version 2, is taken in the following derivation 
of the parabolic τ-q transform. Now we take the Radon transform in the t2-stretching 
domain as an example, i.e. equations (52) and (53).  

Say D(x,ω’) and U(p,ω’) are the Fourier transforms of d(x,t’) and u(q,τ’), respectively. 
D’(x,ω’) is the standard Fourier transform of the reverse parabolic Radon transform. 
Then, in the frequency domain, we have (Zhou and Greenhalgh, 1994): 

 ( ) ( )∫
∞

∞−

−= dqeqUxD qxi 2''' ,, ωωω ， (54) 

The forward projection function U’(x,ω’) of the parabolic τ-q transform is: 

 ( ) ( )∫
∞

∞−
= dxeqDqU qxi 2'''' ,, ωωω ， (55) 

Substituting equation (54) to (55), we can get: 

 
( ) ( ) ( )

( ) ( )∫ ∫
∫ ∫
∞

∞−

∞

∞−

−

∞

∞−

∞

∞−

−

=

=

dxeqUdq

dxdqeqUqU

qqxi

qqxi

)'2'

)'2'

'''

'''''

,

,,

ω

ω

ω

ωω
， (56) 

The function σ (q,ω’) defined by: 

 ( ) ∫
∞

∞−
= dxeq qxi 2'', ωωσ ， (57) 

is introduced. Then equation (56) can be written as: 

 ( ) ( ) ( )'''' ,,, ωσωω qqUqU ∗= ， (58) 

In case of infinite spatial input data, Zhou and Greenhalgh (1994) derived σ (q,ω’) as:  
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 ( ) ( )[ ]
q

qisignq '
'

2
1,

ω
πωσ += ， (59) 

Equation (59) indicates that q-direction deconvolution is required even if the input data 
have an infinite spatial extent. This is different from the linear Radon transform, version 
2. In the Fourier transform domain, equation (58) becomes: 

 ( ) ( ) ( )'''' ,,, ωσωω qqq kkUkU = ， (60) 

or 

 ( ) ( )
( )

( )
( )q

q

q

q
q k

kU
k
kU

kU '

'''

'

''
' ,

,
,

,
σ

ωω
ωσ
ω

ω == ， (61) 

Here the new function σ’(kq) is given by Zhou and Greenhalgh (1994): 

 

( ) ( )[ ]

( )[ ]
q

qik
q

k
qisign

dqe
q

qisignk q

π

πσ

+=

+= −∞

∞−∫

1

2
1'

， (62)  

In fact, the Fourier transform variable kq corresponding to variable q is positive. 
Therefore, equation (62) can be written as: 

 ( )
q

q
k

k πσ 2' = ， (63) 

and equation (61) becomes: 

 ( ) ( )''' ,
2

, ω
π

ω
ω q

p
q kU

k
kU = ， (64) 

which shows that the q-direction deconvolution enhances the Fourier transform 
components. Therefore the resolution in the parabolic τ-p transform domain is increased. 

In case that the variable x has a limited range, [xmin, xmax], there is no analytical solution 
for the equation (57), unless ω’=0, in which case σ (q,ω’)= xmin - xmax. This integral has to 
be approximated by numerical quadrature methods such as the rectangular, trapezoidal or 
Simpson rules.  
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Velocity-stack 

We can do the parabolic Radon transform in the velocity domain. Then equation (52) 
and equation (53) can be written (Yilmaz, 1989) as:  

 ( ) ( )∑ +==
x

vxtxdvu 22''' 4,, ττ ， (65) 

 ( ) ( )∑ −==
q

vxtvutxd 22'''' 4,, τ ， (66) 

We have seen that equation (66) can’t give the exact inversion of equation (65). So a 
rho filter is convoluted to u(v,τ’) before integration over velocity (Beylkin, 1987): 

 ( ) ( ) ( )∫
∞

∞−
−=∗= dvvxtvutxd 22'''' 4,, ττρ ， (67) 

where ( )τρ  has a Fourier transform of the form ( )4exp πω i . 

In this case, L, the linear transform [Equation (8)] from the velocity space to the offset 
space is modified as: 

 








=
=

= −

,...,Nk
,...,Mj

e kj vxi
jk 1

1
   

22ωL ， (68) 

Multiple Suppression 

Since the mapping function is summed along parabolic curve, a parabola in the 
t2-space domain, such as a primary or multiple, ideally maps onto a point in the τ-q or 
Radon domain. Figure 4 (Yilmaz, 1989) shows primaries and multiples in the offset 
domain and the velocity domain. Those multiples have same velocity with their related 
primaries. Hence, we are able to distinguish multiples from primaries in the velocity 
domain based on velocity discrimination and attenuate multiples.  

Now we take the velocity-stack transform into practice (Yilmaz, 1989). Figure 5a is a 
synthetic CMP gather with three primary reflections; 5b is a synthetic CMP gather with 
one primary reflection (arrival time at 0.2 s at zero-offset trace) and its multiples; 5c 
integrates 5a and 5b; 5d is the t2-stretching section of 5c. In Figure 6a is the velocity stack 
of Figure 5d; 6b is the velocity-stack after undoing t2-streching, here we can separate 
multiples and primaries based on velocity differences as indicated; 6c is the full CMP 
gather reconstruction from 6b. Comparing Figure 6b with Figure 5d, Figure 6b is a 
reasonably good reconstruction. On Figure 7c, only primaries are reconstructed from 
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Figure 6b and there is some residual multiple energy. In practice, non-hyperbolic events, 
such as direct and refracted wave, will be lost during the parabolic Radon transform. So 
on Figure 7b, only multiples are constructed from Figure 6b. Then these multiples are 
subtracted from the original data Figure 5c, and all of those events aside from multiples 
are left on the output. On Figure 6b, we find some distortion of the wavelet in shallow 
events (less than 1 s). This is caused by t2-stretching. This distortion will produce blurry 
events in the offset domain, correspondingly, such as Figure 6c, 7a, 7b and 7c.  

 

FIG. 4. Mapping from offset domain to velocity domain (Yilmaz, 1987) 

 



Radon transform and multiple attenuation 

 CREWES Research Report -Volume 15 (2003) 17 

 

(a)    (b)    (c)    (d) 

FIG. 5. (a) A synthetic CMP gather with three primary reflections; (b) A synthetic CMP gather with 
one primary reflection (arrival at 0.2 s at zero-offset) and its multiples; (c) Integration of (a) and (b); 
(d) t2-stretching section of (c) from Yilmaz (1987). 

  

(a)    (b)    (c) 

FIG. 6. (a) The velocity-stack of the CMP gather in Figure 5(d); (b) The velocity-stack after undo 
t2-stretching; (c) The CMP gather reconstructed from (b) given by Yilmaz (1989).  
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(a)    (b)    (c)    (d) 

FIG. 7. (a) The reconstructed CMP gather from Figure 6b; (b) Only multiples constructed from 
Figure 6b; (c) Only primaries constructed from Figure 6b; (d) Subtraction of (b) from Figure 5c from 
Yilmaz (1989). 

THE HYPERBOLIC RADON TRANSFORM 

The Hyperbolic Radon Transform 

A hyperbolic Radon transform performed on NMO-corrected gather, which is more 
correct than a parabola, was introduced by Foster and Mosher (1992). Foster and Mosher 
(1992) mentioned that there are two important conditions for keeping low cost of these 
computations. The first is that the stacking surface should be time-invariant so that 
computations may be performed in the frequency-space domain, and the second is that 
the matrix operators should have Toeplitz form so that fast solvers may be used.  

Now we copy equation (1), the generalized Radon transform, as: 

 ( ) ( )( )∫
∞

∞−
+== dxxqtxdqu φττ ,, ， (69) 

where d is the original seismic data, x is the offset, t is the two-way traveltime, u is the 
transform in model space, τ is the intercept time, and q is the curvature parameter.  

Equation (69) is transformed to the frequency domain as: 
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 ( ) ( ) ( )∫
∞

∞−
= dxexDqU xqi φωωω ,, ， (70) 

The summation along the curvature defined by parameter q, now becomes an integration 
of phase shifts in the frequency domain. The discrete form of equation (70) is: 

 ( ) ( ) ( )∑
=

∆=
N

k
k

xqi
kj xexDqU kj

1

,, φωωω ， (71) 

Since multiples have hyperbolic moveout curves relative to traveltime and offset 
distance, Foster and Mosher (1992) gave the factor of the time-delay function (phase 
shift) as follows: 

 ( ) refrefkk zzxx −+= 22φ ， (72) 

where xk is the offset receiver position and zref is a constant parameter defined as the 
reference depth. The choice of zref is not entirely arbitrary because the difference between 
these hyperbolae and those of reflected waves is controlled by this parameter. The 
smallerφ( xk), the more compact the events will appear in the transform domain. With the 
value of zref, events reflected from this depth are optimally resolved.  

The basic assumption of this method when applied to multiples suppression is that the 
moveout of multiples is different from that of the primaries.  

 

The Shifted-Hyperbolic Radon Transform 

Malovichko (1978) and Castle (1994) derived the shifted-hyperbolic NMO equation 
for a horizontally layered model as: 

 2

2
2
0 v

ht s ++= ττ ， (73) 

where  
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 ( )10 −+= Ss ττ , (74) 
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The shifted-hyperbolic curve represents a Dix NMO equation shifted by the time τs and 
exact through fourth order in offset. Eequation (73)can be written as: 
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or more simple: 
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With the summation curve of equation (80), the function φ(x) in equation (4) becomes 
(Oppert 2002):  

 ( )
S
z

S
x

S
zx 24 2

2

2

−+=φ ， (81) 

 

CONCLUSIONS 

In the slant-stack domain, multiples are periodic for every p value. Predictive 
deconvolution can be applied in the slant-stack domain to suppress multiples. The 
parabolic Radon transform and the hyperbolic Radon transform can be performed to 
attenuating multiple based on the velocity discrimination. One of the problems associated 
with the Radon transform is that a CMP gather only includes a cable-length portion of a 
hyperbolic traveltime trajectory. The finite cable length will cause smearing of the 
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stacked amplitudes along the velocity axis. This can be overcome by a solution given by 
Thorson and Claerbout (1985). 

COMMENTS 

In Figure 6b, the CMP gather in the Radon domain doesn’t have very good resolution. 
Another sample is shown in Figure 8, which is a common-scatter point (CSP) gather (real 
data from Alberta) and its velocity stack, which is a hyperbolic Radon transform that 
shows high resolution. The above principle of multiple attenuation will be applied to 
these types of CSP gathers formed by the equivalent offset method (EOM), Bancroft 
(1998). It is proposed that the improved focussing of CSP gathers, both spatially and 
temporally, will produce an improvement in the attenuation of multiples in prestack 
migrations.  

 

FIG. 8. Velocity stack or the hyperbolic Radon transform of a CSP gather (real data from Alberta) 
from Bancroft (2003). 
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