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Circular Wavefront Assumptions for Gridded Traveltime 
Computations 

John C. Bancroft 

ABSTRACT 
Traveltime computations are an integral part of modelling and imaging seismic data 

by providing efficient kinematic information on the location of propagated energy.  The 
traveltimes may be computed analytically using simplifying assumptions, or may be 
estimated on a complex geological structure using raytracing or gridded traveltimes.  A 
basic requirement for the propagation of gridded traveltimes is the estimation of one 
point on a corner of a square, given the traveltimes on the other three corners.  A number 
of solutions are available to solve for the unknown time and are based on either a plane-
wave assumption, a finite difference solution to the Eikonal equation, or an assumption 
that the wavefront at the square is curved.  A solution for a curved wavefront assumption 
requires estimating the center of curvature, and requires solving a quartic equation.  An 
alternate method is presented to estimate the center of curvature for a curved wavefront 
that uses an iterative procedure and does not require solving the quartic equation. 

INTRODUCTION 
Accurate modelling and Kirchhoff depth migrations compute traveltimes by 

estimating the time along a ray path or on a grid.  These times may represent the 
propagation of energy from a scatterpoint to the surface, defining a diffraction shape for a 
poststack migration.  They may also define the traveltimes between a source and 
scatterpoint, or scatterpoint to a receiver for a prestack migration.   

The gridded method places a grid on the velocity field, then, assuming a given starting 
or source point, computes the traveltimes on the grid surrounding the point.  The 
traveltimes on the adjacent grid points are computed and the process repeated to expand 
the area of known traveltimes.  This region expands away from the source point until the 
desired objective (such as traveltimes on the surface, or the arrival at a desired point) is 
met, as illustrated in Figure 1a.  This figure shows a partial grid and the corresponding 
traveltime contour for a constant velocity.  The traveltimes at the surface are then mapped 
to define a diffraction on a time section in (b).   

The velocity in each square formed by the grid is assumed to be locally constant, and 
in structured areas will vary from square to square.  The inclusion of anisotropy 
parameters with the velocity information enables state-of-the-art anisotropic prestack 
depth migration (Perez, 2004). 

The spreading of times on the grid may be accomplished by a number of techniques 
that involve estimating the time on a corner of a square when the times on the other three 
corners are known.  The geometry for estimating this time is illustrated in Figure 2, 
which shows one square taken from the grid with time t1 at the origin, and times t2 and t3 
on the adjacent corners.  The unknown time t4 that we are estimating is on the corner 
opposite t1.  The square has a local velocity v, and each side has a distance h. 
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a) 

b)  

FIG. 1.  Part of a grid is shown on a) that also contains constant velocity traveltime contours from 
a scatterpoint. Times at the surface are mapped to the time section in b) to illustrate a zero-offset 
diffraction. 
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FIG. 2.  Geometry for one square for gridded traveltime estimations.  Times t1, t2, and t3 are 
known, t4 is unknown. 

A solution to the problem is illustrated in Figure 3 that assumes the energy is 
propagating through the square as a plane-wave.  The traveltime t3x is interpolated on the 
x axis using the two known times t1 and t2.  Connecting the corner time t3 with the 
interpolated time t3x defines the angle of a plane-wave.  The construction of a parallel 
plane-wave that passes through the corner point of t4 will intersect the x axis at time t4x. 

Note the distance on the x axis between t3x and t1 is equal to the distance between t4x 
and t2, giving a simple estimate for the time on the wavefront t4, i.e., 

 4 2 3 1t t t t= + − . (1) 
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FIG. 3.  Plane wave assumption. 

Vidale (1988) introduced a method for computing t4 that was based on a finite 
difference solution to the Eikonal equation, i.e., 

 ( )
2

2
4 1 2 32

2ht t t t
V

= + − −  (2) 

where h is the dimension on a side of the square and v is the local velocity of the square.  
Equation (2) can be rearranged as  

 ( ) ( )
2

2 2
4 1 2 3 2

2ht t t t
V

− + − = . (3) 

 

FIG. 4.  Triangle construction for Vidale’s computation for unknown time t4. 

Equation (3) represents three sides of a triangle that match the construction in Figure 4.   
Note the solid blue vector represents a new wavefront while the red vector is a normal to 
the wavefront at t4.  This method still assumes a plane-wave, but chooses a more 
appropriate angle for the wavefront. 
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Vidale also mentions in his paper that a curved wavefront may be assumed that is 
locally circular at the square.  This geometry is illustrated in Figure 4 and assumes the 
velocity V is now constant over the region that contains the virtual center of curvature at a 
point (-x0, -z0).  The time at the center of curvature is designated t0, which is not assumed 
to be zero, as the wavefronts typically have varying curvature.  Once the time and 
location of the center of curvature is known, then t4 can be computed from 

 ( ) ( )2 2
4 0 0

1t x h z h
V

= + + + . (4) 
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FIG. 5. Geometry for curved wavefront assumption where the center of curvature is (-x0, -z0). 

The initial objective is to estimate the location of the center of curvature (-x0, -z0), and 
to define the time t0 at this virtual source.  Vidale points out that three equations that 
define the times of t1, t2, and t3, from the center of curvature, may be combined into a 
quartic equation that can be solved for (-x0, -z0).  The solutions to the quartic equation are 
analytic, and produce four possible solutions.  This task is straightforward, but not trivial, 
and is the reason for the iterative approach. 

This problem is identical to the Loran C navigation method in which the differences in 
traveltimes from radiating antennae are identified as hyperbolic contours on maps.  In our 
application the traveltime differences (t2 - t1) and (t3 - t1) define the hyperbolae as 
illustrated in Figure 5.  This figure shows four hyperbolae that intersect at four locations, 
corresponding to the four solutions of the quartic equation.  (More often than not, there 
are two real solutions and two complex solutions indicating only two intersection points).  
The relative amplitudes of t2 to t1 and t3 to t1 provide additional information that eliminate 
one side of the hyperbolic pair, reducing the number of possible solutions to two.  Logic 
must then be used to decide which solution is chosen.   

Forming the quartic equation 
Assume that the origin is at the location of the point identified as t1, that the grid 

spacing is two units to the point that defines time t2 and that the corresponding 
normalised velocity of the square V is locally constant.  The times t1 and t2 define the 
focus points of the hyperbolae as illustrated in Figure 6.   
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FIG. 6.  Hyperbolic pair from traveltimes t1 ands t2. 

A conventional representation of the hyperbola is defined by 

 ( )2 2
1

2 2
1 1

1
x c z

a b
−

− = , (5) 

where c1 = 1.  The distance between the two hyperbolae on the x axis is 2a1 with a 
corresponding time difference (t2 -t1) or 

 ( )1 2
1 2

V t t
a

−
= . (6) 

The value of b1 is defined using 2 2 2
1 1 1c a b= +  giving 

 2
1 11b a= − . (7) 

The hyperbolae for the time pair t1 and t3 can also be defined using similar constants as 

 ( )2 2
2

2 2
2 2

1
x c z

a b
−

− = . (8) 

We could at this point define the asymptotes and use them to approximate the source 
location, however our objective is to obtain an accurate source location.  Solving 
equation (5) for z we get 

 ( )
1

2 2

1 2
1

1
1

x
z b

a

⎡ ⎤−
= −⎢ ⎥

⎢ ⎥⎣ ⎦
. (9) 

This value of z may be substituted into equation (8) giving one equation that only 
contains the variable x, i.e., 
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Solving for x, we use considerable algebraic manipulation to get  
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, (11) 

which may then be reorganized to define the coefficients of x, giving our desired quartic 
solution, i.e., 
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. (12) 

At this point we could substitute the values of t1, t2, t3, and V, but that is not efficient, 
and we will assume that the above coefficients are computed to give a quartic equation 
with new variables defined as 

 4 3 2
0 1 2 3 4 0a x a x a x a x a+ + + + = . (13) 

Note that some of these new coefficients are similar to the variables used to define the 
hyperbola, i.e. a1 and a2, but they are now different, and the following will assume these 
new values. 
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FIG. 7.  Two sets of hyperbolae that result from two time differences, t2 - t1 and t3 - t1. 

The significant effort to solve equation (13) is illustrated by the solution produced by 
MATHEMATICA which occupies nearly a page of text as illustrated in the appendix.  
The quartic equation produces four possible solutions as illustrated in Figure 7, but 
usually there are two real solution and two complex solutions.  Logic is now required to 
choose the desired solution.  The desired solution x defines x0, then equation (5) can be 
used to solve for z0 and then t0 is computed from 

 1
0 1

dt t
V

= − . (14) 

THE ITERATIVE SOLUTION 
The method that follows has simpler equations to solve for the center of curvature, but 

does involve iterating to an acceptable accuracy. 

From the geometry of Figure 4 we can write three equations for the distances as  

 

( )
( ) ( )

( ) ( )

2 2
1 1 0 0 0

2 2
2 2 0 0 0

22
3 3 0 0 0

d v t t x z

d v t t h x z

d v t t x h z

= − = +

= − = − +

= − = + −

. (15) 

We can rewrite these equations as  

 

( )
( )
( )

2 2 2 2 2
0 0 1 1 0 0

2 2 2 2 2 2
0 0 0 2 2 0 0

2 2 2 2 2 2
0 0 0 3 3 0 0

2

2 2

2 2

x z v t t t t

x x h h z v t t t t

x z z h h v t t t t

+ = − +

− + + = − +

+ − + = − +

. (16) 

Subtracting the first equation from the second and third we obtain 



Bancroft 

8 CREWES Research Report — Volume 17 (2005)  

 
( )
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0 0 2 1 2 1

2
2 2

0 0 3 1 3 1

2
2 2

2
2 2

v hx t t t t t
h

v hz t t t t t
h

⎡ ⎤= − − + +⎣ ⎦

⎡ ⎤= − − + +⎣ ⎦

. (17) 

These new equations are only dependent on t0; all the other terms are constant.  They are 
then substituted into equation (15)a, i.e., 

 2 2
0 1 0 0

1t t x z
v

= − + , (18) 

giving one equation where the only variable is t0, i.e., 

 ( ) ( )
2 22 2

2 2 2 2
0 1 0 2 1 2 1 0 3 1 3 1

1 2 2
2 2 2 2
v h v ht t t t t t t t t t t t

v h h
⎧ ⎫ ⎧ ⎫

⎡ ⎤ ⎡ ⎤= − − − + + + − − + +⎨ ⎬ ⎨ ⎬⎣ ⎦ ⎣ ⎦
⎩ ⎭ ⎩ ⎭

 (19) 

This equation could be simplified by squaring, but that introduces additional solutions 
that must be identified and eliminated.  In its present form equation (19) can be written as 
a function f(t0) = 0 that is suitable for a Newton-Raphson (NR) iterative solution.  The 
function is differentiable, i.e., 

 

( ) [ ] ( ) [ ]

( ) [ ] ( ) ( ) [ ] ( )
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0
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v t t v t t v t t v t th ht t t t t t
h h h h

−
⎡ ⎤⎧ ⎫ ⎧ ⎫− −⎪ ⎪ ⎪ ⎪⎢ ⎥= + − − + + − − + ×⎨ ⎬ ⎨ ⎬
⎢ ⎥⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭⎣ ⎦

⎡ ⎤⎧ ⎫ ⎧ ⎫− − − −⎪ ⎪ ⎪ ⎪− − + + − − +⎢ ⎥⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪⎢ ⎥⎩ ⎭ ⎩ ⎭⎣ ⎦

.(20) 

Assuming a starting point at t0,1, the NR method uses the derivative f 1(t0,1) to predict an 
improved solution t0,2: 

 ( )
( )

0,1
0,2 0,1 1

0,1

f t
t t

f t
= + . (21) 

Two solutions for f(t0) = 0 are possible that depend on the starting point of the iterative 
solution.  Starting with t0 = 0 is a good choice and is suitable for all points in the third 
quadrant where both x0 and z0 are less than zero.  Solutions in the third quadrant represent 
an expanding wavefield that is moving away from the three known points as designed in 
the mapping of the traveltimes.  Visualization of the NR solution for typical values is 
shown in Figure 8. 
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FIG. 8.  Plot of f(to) and its derivative with red “+” to indicate the iteration results. 

This function f(to) is ideally suited for a NR solution as the derivative at the starting 
point, indicated by the red circle at to = 0, points directly to the solution.  In this case, 
only two iterations are required to achieve an error in the estimate of to to be less than   
10-10.  The blue circle represents the alternate solution point if approached from the right. 

Testing and evaluating the methods 
The accuracy of the different methods were evaluated using an array of points that 

represented many different centers of curvature.  They were defined in the third quadrant 
with 100 × 100 points and with a range of 5h × 5h from the axis.  At each center point, 
the traveltimes t1, t2, and t3 were computed, and then, using only those times, the 
traveltime t4 was estimated. 

The number of iterations required to reach a minimum threshold was recorded and 
displayed in Figure 9.  A threshold of 10-8 for the normalized error in t0 was used, and an 
average iteration number appears to be less than 5.  The number of iterations outside this 
quadrant may be higher, especially on the x and y axis.  However, the solution on the axis 
can be predetermined and eliminated for the iterative solution by noting that a ray on an 
axis will have a time difference that is equal to the normalized distance 2 divided by the 
normalized velocity V. 

The relative errors in estimating t4 in the third quadrant are compared in Figure 10 
using (a) the plane-wave assumption, (b) the Vidale finite difference method, and (c) the 
iterative method.  The plots in (a) and (b) have a maximum error of one percent, while (c) 
has a maximum error of 1.5E-12.  In this region, the plane wave solution has the largest 
error, while the eikonal method also showed some significant error.  However it should 
be noted that their computational requirements are significantly less than the iterative 
method. 

to 
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FIG. 9.  Iterations required to for an error in the third quadrant that is less than 10-8.  

When the center of curvature is relatively close to the dimensions of the grid, i.e. less 
than 5h, then it may be more appropriate to use the curved wavefront assumption than 
Vidale’s method. 

CONCLUSIONS AND COMMENTS 
An iterative method was presented to compute a gridded traveltime estimate that 

assumes curved wavefronts.  The method is simpler than the quartic solution.  The 
number of iterations required for very accurate estimates is typically five or less.  Its 
accuracy was compared with that of a plane-wave assumption and with Vidale’s finite 
difference method. 
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(a) 

 

(b) 

 

(c) 

FIG. 10.  Comparison of the errors in estimating t4, with a) the plane wave method, b) the Vidale 
method, and c) the iterative method. 
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APPENDIX 1 
The following is a solution to the quartic equation obtained using MATHEMATICA: 

Solve[a + b*x + c*x^2  + d*x^3 + f*x^4==0,x] 
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APPENDIX II 
Vidale (1988) also used three inline points to propagate a point away from one side of 

a square shaped traveltime map as illustrated in Figure 11.  (More recent methods expand 
minimum times that approximate a wave front.)  His solution is for three inline points 
was 

 ( )22
3 2

4 1 2 4
t tht t

v
−

= + − , (22) 

which can be shown to represent a plane wave that is defined from times t2 and t3 as also 
illustrated in Figure 11. 
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FIG. 11.  Geometry of estimating t4 given the inline times t1, t2, and t3. 

A circular wavefront could also be assumed with the center of curvature at (-x0, -z0) 
and an apparent time t0 as illustrated in Figure 12.   The process for estimating x0, z0, and 
t0 are much simpler than the three known points on a square and are given by explicit 
equations, i.e., t0 is found from 

 
( )

2
2 2 2
2 3 1 2

0
2 3 1

22

2 2

ht t t
vt

t t t

+ − −
=

+ −
, (23) 

the depth z0 from 

 ( ) ( )
2

2 2
0 2 0 3 04

vz t t t t
h
⎡ ⎤= − − −⎣ ⎦ , (24) 

and the spatial location x0 from 



Bancroft 

14 CREWES Research Report — Volume 17 (2005)  

 ( )22 2
0 2 0 0sqrtx v t t z⎡ ⎤= ± − −⎣ ⎦ . (25) 

The location of x0 needs to be questioned for its sign, but that can be determined from the 
nature of the problem, or might not be required. 
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FIG. 12.  Geometry of estimating the center (-x0, -z0, t0) of a curved wavefront from the aligned 
times t1, t2, and t3. 

The above solution leads back to the original problem of three known times on the 
corners of a square, but now we include the possibility of using additional points in the 
known traveltime neighbourhood as illustrated in Figure 13. 
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FIG. 13.  Geometry of using two sets of three inline points for estimating t4. 

The times t3, t1, and t5 could be used to estimate t0 and z0, then t6, t1, and t2 could be 
used to get an additional estimate of t0 and a single estimate of x0.  Using these additional 
points will require the assumption of a locally constant velocity that is estimated from a 
larger area of four squares.  Since these computations are explicit, an error analysis will 
require a variable velocity field for evaluation. 


