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AVO modeling of monochromatic spherical waves: comparison 
to band-limited waves 

Charles P. Ursenbach and Arnim B. Haase 

ABSTRACT 
Monochromatic and band-limited spherical waves have differing reflection coefficient 

curves. To make a comparison of these two paradigms, a new expression for the 
monochromatic reflectivity is given in terms of a weighting function. The weighting 
function approach, developed previously for a specific class of band-limited spherical 
waves (Rayleigh wavelets), shows explicitly how different plane waves contribute to the 
spherical-wave reflection coefficient. Direct comparison shows that monochromatic 
waves have oscillatory, non-decaying weighting functions, and thus sample a wide range 
of plane waves. This contrasts with typical Rayleigh wavelets which have well-localized 
weighting functions. These two behaviors lead to reflection coefficient curves which are 
respectively oscillatory and monotonic after the critical angle. A bridge between these 
two behaviors is constructed by considering unusually narrow Rayleigh wavelets. These 
show intermediate properties. The benefits of this study are 1) a simple and convenient 
method for calculating monochromatic spherical-wave reflection coefficients, and 2) a 
clearer understanding of how spherical-wave reflection coefficients are created from 
constituent plane-waves. 

INTRODUCTION 
Historically, the most common approach for describing reflectivity of spherical waves 

in seismic exploration has been through constructing the reflection coefficients for a 
monochromatic source.  This approach was due to Lamb (1904) and Sommerfeld (1909) 
and is described in Aki and Richards (1980).  It has been employed for instance by Krail 
and Brysk (1983) and MacDonald et al. (1987).  Carrying out such calculations for 
multiple frequencies allows one to obtain the reflection coefficient for a bandlimited 
wavelet via an inverse Fourier transform. 

Cagnaird (1939) presented an alternate approach in which an expression is given for 
the reflection coefficient of an impulsive wave.  This has been further discussed in 
exploration seismology literature by Bortfeld (1962), Tygel and Hubral (1984) and 
Hubral and Tygel (1985).  Again, a band-limited wavelet result can be obtained from this 
result, in this case by convolution.  Thus both the monochromatic and impulsive 
reflection coefficients involve numerous numerical integrals to obtain band-limited 
reflection coefficients. 

Haase has in recent years developed a flexible scheme for the calculation of 
bandlimited reflectivities from several monochromatic calculations (e.g., Haase (2004)).  
An example of the spherical-wave reflection coefficient curve for an Ormsby wavelet is 
given in Figure 1.  There is good agreement with the plane-wave result at low and high 
angles, but not near the critical point of this Class 1 model.  One other prominent feature 
of this result is the oscillatory decay back to the plane-wave result after the critical angle.  
Haase has also calculated reflection coefficient curves for monochromatic spherical 
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waves.  A number of these are shown in Figure 2.  Even greater oscillations are present 
here that apparently undergo partial cancellation to produce the band-limited Ormsby 
result. 

 

FIG. 1: Comparison of plane-wave and spherical-wave reflection coefficient curves. The two differ 
near the critical angle (~43°). The spherical-wave curve also becomes oscillatory above the 
critical angle. 
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FIG. 2: Individual frequency-dependent curves that are combined to produce the spherical-wave 
reflection coefficient curve of Figure 1. Each line represents the spherical-wave reflection 
coefficient curve for a monochromatic spherical wave. 

We have previously presented a direct approach to bandlimited reflection coefficients 
(Ursenbach and Haase, 2004).  Formally this begins from the monochromatic expression, 
but introduces a specific wavelet, the Rayleigh wavelet (Hubral and Tygel, 1989), at the 
beginning of the procedure.  This wavelet allows the inverse Fourier transform to be 
carried out analytically, before any other steps.  Only one numerical integral then must be 
carried out to obtain the reflection coefficient for a given geometry.  The final result is 
expressed as  

 spherical
PP 0 PP( ) ( , , ) ( ) (cos )i n iR W S R dθ θ θ θ θ

Γ
= ∫ , (1) 

where θi is the angle of incidence, θ is an integration parameter, Γ is an integration path 

in the complex plane, S0 ≡ α1/(Rω0), ω0 is the dominant frequency of the Rayleigh 
wavelet, and Wn is a normalized weighting function, with n a parameter of the Rayleigh 
wavelet.  For Rayleigh wavelets, Wn is an analytic function which can be readily 
programmed. 

In addition to providing a speedy approach to calculating spherical-wave reflection 
coefficients, the Rayleigh wavelet approach of equation 1 also provides useful insight 
into the relationship between plane-wave and spherical-wave reflectivities.  The Wn 
kernel is largest when θ and θi are similar, and decays rapidly when |θ−θi| is large.  Thus 
the spherical-wave reflection coefficient receives contributions primarily from plane-
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wave coefficients near the angle of incidence.  Indeed, as S0 → 0, the spherical-wave 
coefficient approaches the plane-wave Zoeppritz result (Ursenbach and Haase, 2004). 

Because the monochromatic reflection coefficients have been considered in previous 
studies (Krail and Brysk, 1983; Macdonald et al., 1987), it is of interest to develop a 
similar understanding of how plane-wave coefficients contribute in this case. This is the 
subject of the present investigation. 

To approach this problem we first derive an expression for the monochromatic 
spherical-wave reflection coefficient which is similar in form to equation 1.  We may 
then compare monochromatic reflection coefficients to bandlimited reflection 
coefficients, and monochromatic weighting functions to bandlimited weighting functions.  
We will demonstrate that the two cases differ significantly, but that the bandlimited 
results approach the monochromatic results for increasingly narrow bands. 

THEORY 
Analogous to equation 6.30 of Aki and Richards (1980), the monochromatic potential 

for a reflected spherical wave may be written as 

 PP 00
( ) exp( ) ( ) ( ) exp[ ( )]pAi i t R p J pr i z h dpφ ω ω ω ω ωξ

ξ
∞

= − +∫  (2) 

where φ is the spectrum of the displacement potential, ω is the frequency, A is an 

arbitrary scale factor, t is the time, p and ξ are horizontal and vertical slownesses, RPP is 
the plane-wave reflection coefficient, J0 is a zeroth-order Bessel function, r is the source-
receiver offset, and z and h are the vertical distances from the interface to the receiver and 
source. 

To obtain the displacement spectrum we must take the gradient of the potential.  In 
particular we are interested in the component of the displacement parallel to the ray 
vector at the receiver, (sin θi, 0, cos θi), where θi is the angle of incidence.  We denote this 
displacement component as 

[ ]PP 1 00
( ) exp( ) ( ) ( )sin ( ) cos exp[ ( )]i i

pu Ai i t R p pJ pr i J pr i z h dpω ω ω ω ω θ ωξ ω θ ωξ
ξ

∞
= − − + +∫

             (3) 
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 To obtain a reflection coefficient which can be compared to the plane-wave Zoeppritz 
coefficients, we divide this result by the displacement spectrum obtained using RPP = 1.  
In this case the potential simplifies to 

 PP 1

1

( ) expR A Ri t
R

φ ω ω
α

= ⎡ ⎤⎛ ⎞
= − −⎢ ⎥⎜ ⎟⎝ ⎠⎣ ⎦

 (4) 

where R is the length of the raypath from source to receiver (= 2 24r z+ ), and α1 is the 

P-wave velocity of the overburden (= 2 21/ p ξ+ ).  The parallel component of the 
gradient in this case is just equal to the partial derivative with respect to R: 

 PP 1
2

1 1

1( ) expR i Ru A i t
R R

ωω ω
α α

= ⎡ ⎤⎛ ⎞ ⎛ ⎞
= − + − −⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦
. (5) 

The normalized monochromatic reflection coefficient is then 

 [ ]

PP
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PP 1

2
PP 1 00

2
1 1

( )( )
( )

( ) ( )sin ( ) cos exp[ ( )]

1 exp

i R

i i

uR
u

pi R p pJ pr i J pr i z h dp

i Ri
R R

ωθ
ω

ω ω θ ξ ω θ ωξ
ξ

ω ω
α α

=

∞

=

− + +
=

⎛ ⎞ ⎡ ⎤
− + ⎢ ⎥⎜ ⎟⎝ ⎠ ⎣ ⎦

∫ . (6) 

We can perform a change of variables for the integration and define sin θ ≡ p α1 and 

cos θ ≡ ξα1.  Then (p/ξ)dp = −d(cos θ)/ α1, and the integration path becomes complex.  If 

we set h = z, and note that z = (R/2) cosθi and r = R sinθi, then this can be written as 

spherical
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While this may appear more complicated than equation 6, note that the integrand now 
depends upon only three variables, θ, θi, and S, where R, ω and α1 appear only in the 

combination S = α1/(Rω), a quantity which provides a measure of the importance of 
curvature and spherical effects.  We note that this is now of the form 
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 spherical
PP PP( ) ( , , ) ( ) (cos )i iR W S R dθ θ θ θ θ

Γ
= ∫ , (8) 

with  

 [ ]
( ) [ ]

1 0(sin sin / )sin sin (sin sin / ) cos cos
( , , ; wavelet)

1 exp (1 cos cos ) /
i i i i

i
i

J S iJ S
W S
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θ θ θ θ θ θ θ θ

θ θ
θ θ

− +
=

− −
. (9) 

We have thus derived an equation of the form of equation 1, and can compare reflection 
coefficients and weighting functions between monochromatic waves and band-limited 
waves. 

RESULTS 
We consider a Class I AVO system defined in Table 1. We have employed this model 

previously (Ursenbach and Haase, 2004).  The plane-wave reflection coefficients for this 
model are given by the solid lines in Figure 1.  These coefficients are also present in the 
integrand of equations 1 and 8.  To calculate W we also require a value of S.  We assume 
that the frequency of the monochromatic wave is 100/π Hz, and that the depth of the 

interface is 500 m.  From Table 1 α1 = 2000 m/s, so S = .01cosθi.  Equations 8 and 9 may 
then be solved and the result is shown by the dashed line in Figure 3.  We see that the 
plane-wave and spherical-wave results are very similar at low angles, they differ 
considerably near the critical angle, and then begin to approach each other more as the 
angle of incidence approaches 90°.   

Table 1. Two-layer, elastic interface model employed in calculations. 

 Density (kg/m3) P-wave velocity (m/s) S-wave velocity (m/s) 

Layer 1 2400 2000 879.88 

Layer 2 2000 2933.33 1882.29 
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FIG. 3: Comparison of plane-wave (solid) and monochromatic spherical-wave (dashed) reflection 
coefficients for a Class I system.  The magnitude is shown in a) and the phase in b).  The 
spherical-wave response is strongly oscillatory past the critical angle. 

Figure 3 is consistent with the behavior observed in Figure 2, and is reminiscent of the 
Ormsby wavelet result in Figure 2.  Rayleigh wavelet reflection coefficients on the other 
hand approach the plane-wave result much more smoothly after the critical angle. To 
understand these differences we consider the weighting functions that give rise to the 
above reflection coefficients.  In Figure 4 we plot W(S =.02 cos(40°), θ, θi=40°) from 
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equation 9 against θ.  Also displayed is W4(S0, θ, θi) from equation 1, with n = 4 and S0 = 
.02 cos(40°). 

In Figure 4 the most striking observation is that the two functions are most similar 
near the angle of incidence (40°) but bear little similarity to each other outside of that 
region. Away from the critical angle the bandlimited W decays quickly to zero, while the 
monochromatic W oscillates strongly about zero.  Both of these behaviors have the effect 
of emphasizing plane-wave contributions near the angle of incidence.  Outside the critical 
region the integrand of equation 1 vanishes, while the integrand of equation 9 gives rise 
to cancellation. 

 

FIG. 4: Comparison of weighting functions for monochromatic and band-limited cases.  The 
functions were obtained with similar sphericity parameters (S = S0) and identical angles of 
incidence (40º).  The greatest similarity between the functions occurs in the region of the critical 
angle. 

We show next that it is also possible to construct a bridge between these two types of 
behavior. Some recent refinements of the Rayleigh wave theory (Ursenbach et al., 2006a) 

a) 

b) 

c) d) 
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have made it practical to carry out reflection coefficient calculations for large values of n.  
In Figure 5 we show three wavelet spectra having the same value of f0 as before, but with 
values of n equal to 5 15, and 50.  As n increases, the wavelet approaches a spike 
centered at f0, and should therefore approach monochromatic behavior.  Such a 
progression could then form a bridge between the two wavelets represented in Figure 4. 

 

FIG. 5: The spectra of three Rayleigh wavelets, each centered at ~31.8 Hz. As n increases, the 
spectrum becomes increasingly spike-like, so that its associated reflectivity behavior should 
approach that of a monochromatic wavelet. 

First we consider the weighting function behavior.  Figure 6 displays weighting 
functions for the three Rayleigh wavelets and the monochromatic wavelet.  The n = 15 
and n = 50 wavelets do indeed form intermediates.  They decay away from θ = θi, as does 
the n = 5 wavelet, but their decay is slower and more oscillatory, approaching the 
behavior of the monochromatic weighting function. 
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FIG. 6: The weighting functions defined at θi = 40° for the three wavelets in Figure 3. Note that the 
tails of the Rayleigh wavelet weighting functions [a)-c)] become increasingly oscillatory as n 
grows, thus approaching the appearance of the monochromatic wavelet weighting function in d) 

a) 

d) 

c) 

b) 
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Finally we compare the reflection coefficients calculated from such weighting 
functions.  Figure 7 shows the four corresponding curves together.  Again we see 
intermediate behavior for the larger n values.  The post-critical oscillations are present, 
but do not persist to as high an angle as for the monochromatic case.  This suggests that 
the post-critical oscillations are a result of oscillatory tails in the weighting functions.  
Thus framing calculations in terms of weighting functions, as in equations 1 and 9 
provides insight into spherical-wave calculations for different types of wavelets. 

 

FIG. 7: The spherical-wave reflection coefficient curves for a series of Rayleigh wavelets, with the 
corresponding plane-wave curve and monochromatic spherical-wave curve.  As n increases the 
Rayleigh curve behavior approaches that of the monochromatic curves. 

SUMMARY AND COMMENTS 
Spherical-wave reflection coefficient calculations have been re-expressed in terms of a 

weighting function.  This weighting function depends explicitly on only three variables: 
angle of incidence, an integration variable, and a sphericity parameter.  The latter 
subsumes frequency, overburden velocity and depth.  The weighting function is analytic 
and may be readily programmed in terms of these three variables.  A straightforward 1-D 
numerical integration then yields the normalized reflection coefficient. 
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Calculations with the method have shown that weighting functions for monochromatic 
wavelets are non-decaying and highly oscillatory.  Comparing them to a series of 
weighting functions and reflection coefficient curves for increasingly narrow Rayleigh 
wavelets suggests that the less smooth the wavelet spectrum is, the more oscillatory the 
weighting function will be, and this will result in oscillations in the reflection coefficient 
curve as well.  This suggests that the Ormsby wavelet would have an oscillatory 
weighting function as a result of slope discontinuities in its spectrum.  Another report in 
this volume explores aspects of that question (Ursenbach and Haase, 2006). 

Monochromatic spherical-wave reflection coefficients are a quantity of fundamental 
theoretical interest That they may also be of practical interest in interpreting 
monochromatic seismic surveys is discussed in another report in this volume (Ursenbach 
et al., 2006b). 
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