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A hybrid method applied to a 2.5D scalar wave equation  

P.F. Daley  

ABSTRACT 
A variation of the acoustic scalar wave equation is used for the seismic modeling of 

compressional ( )P  wave propagation in a three dimensional structure. A combination of 
finite difference and finite integral transform methods are employed for this purpose. To 
reduce the complexity of the problem, the elastic parameters of the medium are assumed 
to be constant in one of the three Cartesian spatial dimensions. The homogeneous 
dimension is removed from the finite difference problem through the use of a finite 
integral transform. Homogeneity is not a necessary requisite but the resultant transformed 
problem is at a minimally uncomplicated computational level, while still allowing for 
some degree of 3D modeling capability. A fairly basic situation is provided from which 
computational issues may be addressed, that are also relevant in the more general fully 
inhomogeneous problem. True amplitudes are obtained as 3D geometrical spreading is 
inherent in the theory. The proper definition of the method presented here would be a 
2.5D solution to a wave equation. 

INTRODUCTION 
A sampling of references in the geophysical literature on the topic of using a 

combination of finite integral transforms and finite difference methods are Alekseev and 
Mikhailenko (1980), Gazdag (1973, 1981), Kosloff and Baysal (1982), Mikhailenko and 
Korneev (1984) and Mikhailenko (1985), where additional references may be found. 
However, much of the relevant literature, at a fairly complex level, for this solution 
method is relatively inaccessible as it appears in journals and texts written in Russian. 
(Citations of these are not included here.) Papers in English by Russians scientists 
engaged in this research area are most often found in mathematical journals and contain 
little in the way of numerical implementation. For these reasons it was deemed 
appropriate to investigate the most basic problem of this type and deal with the more 
essential numerical considerations. A recent publication by Novais and Santos (2005), 
addresses a problem similar to that considered here. However, the method presented in 
this work follows a more analytic treatment in the initial stages of the problem using of a 
finite Fourier transform to remove the spatial dependence of one coordinate as opposed to 
an infinite Fourier transform, and the finite approximation thereof, employed in their 
paper. The use of a finite integral transform has the advantage of allowing for the 
determination of a number of quantities prior to running the program. A comparison of 
results will be made with a test model studied in the above cited work. 

A combination of finite difference and finite integral transform techniques is 
employed here to obtain a numerical solution to a hyperbolic (wave) equation in three 
dimensions. This solution is more correctly called a 2.5 dimension (2.5D) solution. It was 
initially developed to compensate for hardware limitations, requiring less physical 
computer resources, with the trade off of a more complicated algorithm for modeling 
complex geological structures than by conventional finite difference methods alone. The 
elastic parameters in that spatial dimension in which a finite integral transform is applied, 
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to reduce the dimensionality of the problem, are assumed to be homogeneous. This work 
may possibly be considered tutorial in nature, but the consideration of this simple 
problem within the context of hybrid solution techniques, has the ability to conveniently 
both introduce the method’s concept and present computational measures that maximize 
the algorithm’s efficiency, topics not usually dealt with in the literature. The transformed 
problem is highly parallel and is also a candidate for the application of vectorization 
techniques. 

The use of variations on source and receiver patterns can enhance the 3D modeling 
capabilities of what is essentially a 2D solution with 3D kinematics and dynamics 
(geometrical spreading). As several lines of receivers parallel to the ( ),x z  plane that do 
not contain the source may be recorded, a type of rebinning, using traces from these 
individual lines may be used to produce receiver lines oriented at specific angles across 
the 2D array of surface receivers, within a single run. Rather than using the P-wave 
velocity, ( )Pv x , as input, the elastic parameter ( )λ x  and density ( )ρ x are used 

( ) ( ) ( )( )2
Pv λ ρ=x x x  for increased modeling flexibility. Additionally, if so required, a 

number of sources, at arbitrary positions, may be employed in a single run without any 
significant increase in run time. 

As the computational speed of this algorithm is a major concern, the code has been 
written to take advantage of all possible enhancements of a number of specific Fortran 
compilers and available hardware. The motivation for this is that for moderately sized 
models, this code (or variations thereof) may possibly be utilized iteratively in 
applications such as inverse problems. 

THEORY 

Acoustic wave equation: 

Assume a 3D acoustic medium in a Cartesian coordinate system, ( ), ,x y z , that is 
inhomogeneous except in one spatial dimension, say the y  – direction. The general 
acoustic wave equation for some scalar amplitude, ( ), , ,x y z tφ φ= , is given by 

 ( ) ( ) ( ) ( ) ( ) ( )2
0, ,tt t f tλ φ ρ φ δ∇ ⎡ ∇ ⎤ − ∂ = −⎣ ⎦⋅ x x x x x x  (1) 

where ( ) densityρ −x , ( )λ −x is the elastic parameter, such that the acoustic P-wave 
velocity is defined as ( ) ( ) ( )2

Pv λ ρ=x x x , ( )δ −x  indicates a point source of acoustic 

waves and ( )f t  is a band limited wavelet, which will be discussed in more detail later, 

with t being time in the digitized interval ( )max0 t t≤ ≤ , maxt  being the length of the 
computed synthetic trace. The 3D Cartesian coordinate system is chosen so that the 
vertical coordinate, z, is positive downwards. 

As the density, ρ , and elastic parameter, λ , have been assumed independent of the 
spatial coordinate y , equation (1) becomes 
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 ( ) ( ) ( ) ( )2 2
0x x y z z t f tλ φ λ φ λ φ ρ φ δ∂ ∂ + ∂ + ∂ ∂ − ∂ = −x x  (2) 

with ( ),x zλ λ=  and ( ),x zρ ρ= . The initial value problem is fully specified by 
introducing the conditions 

 
0 0

0tt t
φ φ

= =
= ∂ = . (3) 

Wave propagation, due to a point source excitation of wavesP − , will be assumed to 
be confined to the spatial geological volume ( )0 ;0 ;0x a z b y c≤ ≤ ≤ ≤ ≤ ≤ . Only four of 
these six boundaries will initially be taken to be perfectly reflecting, ( )0 andx a=  

( )0 andz b=  as the finite integral transform may require that other conditions be 
specified at 0 andy c= . These preliminary boundary conditions require that some 
measures such as absorbing boundaries (Clayton and Enquist, 1977 and Reynolds, 1978) 
or attenuating boundaries (for example, Cerjan et al., 1985) be incorporated in the 
solution method so that spurious reflections from them will not contaminate, to any 
significant extent, the wave field propagating within the spatial volume and recorded at 
the receivers. The y spatial dimension is to be temporarily removed employing a finite 
cosine transform, which requires the specification of explicit boundary conditions at 

0y =  and y c=  in the transform procedure. As a consequence, it is not possible to 
redefine the boundary conditions that could introduce attenuation at these boundaries. A 
schematic of a simple geological model is shown in Figure 1. 

Specious reflections from the boundaries at 0y =  and y c=  can be eliminated by 
setting the source at a sufficient distance from both of these boundaries so that reflections 
from them do not arrive at the receivers within the specified time window ( )max0 t t≤ ≤ of 
the synthetic trace at any receiver location. As will be shown later, the number of terms 
required to approximate the infinite cosine inverse series summation increases linearly 
with the value of c , indicating that some consideration should be given to its choice. The 
reason for this is that the 2D finite difference portion of the algorithm must be computed 
for each of the terms in the inverse series summation.  

The y  direction was chosen to have no spatial dependence so that a simple finite 
integral transformation could remove this coordinate leaving only the fairly standard 
( ), ,x z t  finite difference computation. If this were not done and the geology was allowed 
to vary in the y  direction the transform of the elastic parameters in this direction must be 
included in the solution, complicating matters to the extent that what was to be discussed 
here would become a secondary issue. It will be further assumed that the 2D finite 
difference algorithm used is accurate as a consequence of its frequent use since its 
development, so that discussion of this aspect will not be undertaken here. 

The topic of finite integral transforms that involve the variation of elastic parameters 
in the transformed coordinate has been dealt with in the literature for a 2D medium and 
its extension to 3D is the topic of ongoing work. The limitations on the modeling 
capabilities of the resultant computer code presented here are fairly severe, but do allow 
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for a least a minimal amount of latitude for dealing with an acoustic type of wave 
propagation in a 3D model at a moderate expenditure of computer resources. The y  
spatial dimension is removed temporarily through the application of a finite cosine 
transform, with the solution ( ), , ,x y z t  space being recovered by applying the finite 
cosine transform inverse.  

Finite cosine transform: 

If the function ( )yφ  satisfies the Dirichlet conditions in the interval ( )0,c  and if in 
this interval the relation 

 ( ) ( )
0

cos
c n yn y dy

c
πφ ⎛ ⎞Φ = ⎜ ⎟

⎝ ⎠∫  (4) 

is valid at all points in the interval ( )0,c , where the function ( )yφ  is continuous, the 
following equality 

 ( ) ( ) ( ) ( )
1 0

0 2 2cos cos
n n

n y n yy n n
c c c c c

π πφ
∞ ∞

= =

Φ ⎛ ⎞ ⎛ ⎞= + Φ ≡ Φ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑  (5) 

holds. It is understood that the 0n =  term has been included in the summation for 
convenience of notation. Some upper bound on the summation must be determined that 
adequately approximates the infinite series. This number, apart from the previously 
mentioned linear dependence on the distance c, will be shown to be related to the spectral 
content of the source wavelet, the reason for requiring it to be band limited. 

Applying the cosine transform to equation (2), with the assumption of stress free 
conditions at 0 and y c= , 

0
0y y

φ
=

∂ =  and 0y y c
φ

=
∂ = , having to be made, results in 

 
( ) ( )

( ) ( ) ( )

2 2
2

2

0
0 0cos

x x z z t
n

c
n yx x z z f t

c

πλ λ λ ρ

πδ δ

∂ ∂ Φ − Φ + ∂ ∂ Φ − ∂ Φ =

⎛ ⎞− −⎜ ⎟
⎝ ⎠

 (6) 

with ( ), , ,x n z tΦ = Φ  and the source position, 0y , located such that 00 y c< < . 
Neglecting the source term for the moment, the finite difference analogue, accurate to 
second order in both space and time may be written as  
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( ) ( )

2
1 1

, 1, 1, , 1, , 1 , 1 , , 1 ,2
,

2 2 2 2

, , 1 , 1, , ,2 2
, ,

2

m m m m m m
i j i j i j i j i j i j i j i j i j i j

i j

m
i j i j i j i j i j i j

i j i j

t a a b b
s

n t t b b a a
c s

δ
ρ δ

π δ δλ
ρ δ ρ

+ −
+ + − + + −

+ +

⎛ ⎞
⎡ ⎤Φ = Φ + Φ + Φ + Φ − Φ +⎜ ⎟ ⎣ ⎦⎜ ⎟

⎝ ⎠
⎡ ⎤

⎡ ⎤− − + + + Φ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

 (7) 

In the above equation, the spatial sampling rates in the ( ) ( ), ,x z i j→  directions were 
both taken to be sδ . The time step, for which some stability conditions are yet to be 
established, was denoted as ( )t mδ → . The quantities ,p qa  and ,p qb  may be determined 
from derivations which appear in Ames, (1969) or Mitchell, (1977), among others, as 

 , 1,
,

, 1,

2 p q p q
p q

p q p q

a
λ λ

λ λ
−

−

=
+

 (8) 

 , , 1
,

, , 1

2 p q p q
p q

p q p q

b
λ λ

λ λ
−

−

=
+

 (9) 

The boundary at the surface of the model, 0z = , is assumed to be perfectly reflecting, 
a not unrealistic assumption, based on the condition that ( )

0
, , ,

z
x y z tφ

=
 be continuous, 

and the half space 0z <  is taken to be a vacuum, making the model boundary perfectly 
reflecting there. If required, it may also be made absorbing, thus removing any surface 
multiples. 

The saving in space, having to use only 2D arrays to specify the potential, φ , elastic 
parameter, λ , and density, ρ , requires the additional expenditure in computational time, 
compared with the 2D case, as equation (7) must be solved for those values of n , 
( )max0 n n≤ ≤ , where maxn  is the number of terms in the inverse cosine series that 
reasonably approximates the infinite series. However, as shown by Novais and Santos 
(2005), the time requirements are significantly less than if 3D finite difference methods 
are employed. They further showed, as might be predicted, that the time requirements 
diverge, favoring the method discussed here, as the number of grid points increases.  

The estimate of the number of terms required to approximate the inverse series 
summation is discussed in the next section. As previously mentioned, the 2D finite 
difference computations must be undertaken maxn  times, the utmost use of parallel 
processing options is indicated. 

Number of terms in inverse transform series: 

A plane wave dependence of φ  on y  is assumed so that ( ) yik yy Aeφ = , for some 
constant amplitude A, leading to 
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 ( ) ( )22 yik y
y yy A ik eφ∂ =  (10) 

The wave number in the y  direction is defined in terms of the circular frequency, ω , and 
the y  component of horizontal slowness, yp , as 

 y yk pω= . (11) 

Comparing this with the wave number used in the finite cosine transform results in 

 2y yk fp n cπ π= = . (12) 

It follows that 

 2 yfp n c=  (13) 

and subsequently 

 2 yn fp c= . (14) 

The quantity maxf , which is assumed to be known, is that frequency such that the 
interval ( )max0 f f≤ ≤  contains 100%  of the frequency content of the source pulse, and 
hence any associated seismic traces. In practice, this requirement is relaxed to 100%  of 
the numerical content. It is for this reason that a band limited source pulse is assumed, as 
it was easier to obtain a finite range of frequencies that covers the trace/wavelet spectrum 
for what is essentially a wavenumber method of solution in the transformed coordinate. 
The Gabor wavelet, which will be used here and is of the specified type, is defined in the 
time domain 

 ( ) ( )
2

0
0

2cos 2 exp f tf t f t ππ
γ

⎡ ⎤⎛ ⎞= −⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

 (15) 

which after a Fourier time transform may be written in the frequency domain as 

 ( ) ( )
1 2 2 2

2
0

0 0

exp 1 cosh
4

F π γ ωγω ω ω
ω ω

⎛ ⎞⎡ ⎤
= − + ⎜ ⎟⎢ ⎥

⎣ ⎦ ⎝ ⎠
 (16) 

where 0f  is the predominant frequency of the source wavelet and the dimensionless 
quantityγ  ( )4 5γ ≈ −  controls the side lobes in the time domain and is also a measure of 
the width of the Gaussian term in the frequency domain. An initial estimate of maxf  is 
approximately 02 f  for 4γ = . A more exact determination may be obtained by 
numerically integrating equation (16), at a suitably fine sampling rate, fΔ . More about 
this will be said shortly. Figure (2) shows the time and frequency spectrum values of 

( )f t  for 0 30f Hz=  for 4 and 5γ = . In the time domain panel the wavelets have been 
shifted such that their normalized maximum amplitudes coincide. It should be restated 
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that the value used for here for maxf  ( )max 02f f=  is generally valid only for the Gabor 
wavelet with 4γ = . For 4γ ≠  or for some other wavelet type, maxf  must be obtained by 
other means, most often numerical. It was thought that the use of a reasonably accurate 
estimate for maxf , in terms of a relevant quantity, might simplify this discussion 
somewhat. 

The quantity ( )
maxyp  is given by ( ) min minsin 2 1v vπ ≈ , with min min

v λ ρ⎡ ⎤= ⎣ ⎦ , the 

minimum velocity in the ( ),x z  model plane. Thus, a fairly accurate estimate for maxn  is  

 ( ) max
max 0 max

min

24 y
f cn f p c
v

≈ ≈  (17) 

where maxn  is such that in the frequency domain the range of frequencies considered is 
such that it covers the spectrum of the wavelet. 

It should be note here that if too few terms are initially used in the infinite series 
approximation, which would be apparent upon viewing the synthetic traces, additional 
terms may be added to the original solution without recomputing the original traces using 
the initial estimate of maxn  so that an acceptable result is produced. However, it is usually 
best to err on the cautious side and overestimate the quantity maxn . 

Also, from equation (17), it should also be recognized that 

 max min
max 2

n vf
c

=  (18) 

and further that 

 max maxf n f= Δ  (19) 

for some frequency step, fΔ , dependent on the width of the wavelet spectrum in the 
frequency domain. From this it follows from (18) that 

 min
max 2

vf
c

Δ = . (20) 

This frequency increment, denoted as maxfΔ , is the maximum value of the frequency 
domain sampling rate, recommended for use in the numerical integration of the Gabor 
frequency domain spectrum. For the Gabor wavelet, the relation max 02f f≈  has been 
assumed as a reasonable guess to obtain the quantity maxn . The use of maxfΔ  in a 
numerical integration of the spectrum of the wavelet to determine maxn  can be viewed as 
a cautious check on the accuracy of this quantity. 
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This method has been referred to as a wavenumber summation method by Müller 
(1995) when referring to similar methods presented by Alekseev and Mikhailenko 
(1980). This is substantiated by the relation, obtained from equations (12) and (20), that 

 ( ) ( ) ( )min min maxmax max
2  0y y yk f p p m n

c
ππ ω= Δ = Δ ≈ ≤ ≤  (21) 

where yk  is the out of plane horizontal component of the wavenumber vector. The 
inverse cosine series summation is then a summation over the discrete set of 
wavenumbers yk cπ= . 

Stability conditions 
As is common practice, the von Neumann criterion to obtain stability conditions will 

be derived under the assumption of constant elastic parameters and density. Thus 
equation (7) reduces to 

 

2 2
1 1max
, 1, 1, , 1 , 1 ,2

2 2 2 2 2 2
max max

,2 2

42

m n m n m n m n m n m n

m n

t v
s

n t v t v
c s

δ
δ

π δ δ
δ

+ −
+ − + −

⎛ ⎞
⎡ ⎤Φ = Φ + Φ + Φ + Φ − Φ +⎜ ⎟ ⎣ ⎦

⎝ ⎠
⎡ ⎤

− − Φ⎢ ⎥
⎣ ⎦

 (22) 

where 2
maxv  is the square of the maximum waveP −  velocity encountered on the 2D finite 

difference grid. The von Neumann stability condition is used, as harmonic decomposition 
of equation (22) may be performed and consequently it will be shown that the error at a 
given grid point and time step may be determined. The amplitude ,m nΦ  containing the 
amplification factor, η , can then be written as (Mitchell, 1977) 

 ( ) ( )
, .x zi m s i n s

m n e eβ δ γ δηΦ =  (23) 

The wave numbers xβ  and zγ  are arbitrary. To determine the conditions required so 
that error does not increase with increasing time it is required to find a solution of the 
finite difference analogue such that 1η ≤ . Substituting equation (23) into equation (22) 
results in 

 2 1 0η ση− + =  (24) 

whose solution is 

 
2 4

2
σ ση ± −=  (25) 

and σ  may be written as 
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 2 2
2 2 2 2 2 2

max max
2 24sin 4sin

2 2
2j js st v n t v

s c
β δ γ δδ π δσ

δ
⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞

+⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠
= − + . (26) 

and finally to 

 
2 2 2 2 2 2

max max
2 28 2t v n t v

s c
δ π δσ

δ
⎛ ⎞
⎜ ⎟
⎝ ⎠

= − +  (27) 

as ( )2sin 2 1j sβ δ ≤  and ( )2sin 2 1j sγ δ ≤ . 

As stability requires that 1η ≤  which is equivalent to 1σ ≤  (Mitchell, 1977) the 
following results 

 
2 2 2 2 2

max
2 2

31
8

t v n s
s c

δ π δ
δ

⎡ ⎤
⎢ ⎥
⎣ ⎦

+ ≤  (28) 

leading to 

 
1 22

max

max

2 2

2
3 1
8

st
v

n s
c

δδ π δ
−

⎡ ⎤
⎢ ⎥
⎣ ⎦

≤ +  (29) 

specifies the stability condition for the problem given in equation (2). It may be seen 
from equation (29) that tδ  has a different value at each n  and as 

1 22 2 2 21 n s cπ δ⎡ ⎤⎣ ⎦+  is 
always greater than unity attaining its maximum value at maxn n= , it is that value which is 
used to specify tδ . For the transformed 2D finite difference scheme that is accurate to the 
second order in both space and time. This choice also ensures a constant global time step 
for all roots. 

Points per wavelength (grid dispersion)♦ 
There are a number of other numerical issues on the use of finite difference methods 

that could be addressed. However, the major topic that has not yet been dealt with is 
specifying the number of grid points per wavelength. There are a number of ways in 
which a wavelength may be defined when considering a problem such as that dealt with 
here. Probably the most useful is 

 min

max

vWL
f

=  (30) 

where wavelengthWL − and minv  and maxf  have been previously defined. From equation 
(18) it should be noted that the following also holds (for the Gabor wavelet used here) 

                                                 
♦ From Mikhailenko (1980), ( )min 0.4q v t sδ δ= ≈  is used to assess the error at or in the vicinity of the 
grid points displaying the minimal velocity of the medium. 
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 min

max max

2v cWL
f n

= = . (31) 

As stated in Mufti (1990), and others, a finite difference scheme accurate to the second 
order should have at least 10 points WL  ( )10WLn ≥ . It is further stated the grid spacing 
used in the second order accurate spatial finite difference analogue, so as not cause 
excessive dispersion of energy requires that 

 min

max max

2

WL WL

v cs
n f n n

δ =≤  (32) 

where WLn  is the number of points per wavelength. 

As a final comment in this section, some indication of accuracy should be addressed. 
Being that the exact solution of the scalar wave equation is known for an infinite medium 
with constant velocity, a comparison can be done with method presented here for the 
same medium type. This exercise produced results that varied in the order of 1 3%−  at 
20WL from the source. These are in agreement with those indicated by Mikhailenko 
(1980) for a transformed 3D medium with radial symmetry. 

NUMERICAL RESULTS 
One model has been chosen and computed using this method to test the accuracy of 

the method presented here with the results for a model similar to model 1 in the paper of 
Novais and Santos (2005) and shown in Figure (4). For consistency, equation (1) in this 
paper must be replaced by 

 ( ) ( ) ( ) ( ) ( )2 2 2
0, ,P tv t t f tφ φ δ∇ − ∂ = −x x x x x  (33) 

the standard 3D acoustic wave equation, which can be done with minimal program 
modifications. The spatial increment used here is 5s mδ = , half of that used by Novais 
and Santos (2005), as in that paper they use finite difference code accurate to fourth order 
in spatial coordinates and second order in time while the pseudo – code presented here is 
accurate to second order in both space and time. An explosive point source of wavesP −  
on the surface at 800x m=  the center of the 1600m  range with 41 receivers at the surface 
at a 40m  spacing. The source location in y  direction is at 0 1000y y m= =  with 

2000y c m= =  provides a reasonable time window ( )max0 t t≤ ≤  such that receiver lines 

in the vicinity of 1000y m= , say ( )0750 1000 1250m y m m< = <  are not affected by 
unwanted arrivals from the boundaries at 0 andy c= . The Gabor wavelet (equation (15)) 
is used here, so that with 0 30 , 4f Hz γ= = , that max 60f Hz≈ . The minimum and 
maximum velocities in the model are min 3000v m s=  and max 4000v m s= . A schematic 
of the model is given in Figure (4).  

From equation (17), max 80n =  for 0 30 , 4f Hz γ= = , and max 160n =  for 

0 60 , 4f Hz γ= = . This is in contrast to the number of points in the summation used by 
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Novais and Santos (2005) where the summation was taken over the wavenumber range 
( ) 10,0.22 m−  at a step of 10.0005m−  which results in 440 points required to be considered 
in the inverse series summation. Results are presented in Figures (5) and (6). A fairly 
crude measuring system was used to compare the results computed here with those in the 
abovementioned paper and it was found that there was a reasonable fit, given the 
measuring technique. As a final note, the run times were 221 seconds for 0 30f Hz=  and 

4γ =  and 511 seconds for 0 60 , 4f Hz γ= =  on a PC with a 1.7GHz processor and a 
Linux operating system. 

CONCLUSIONS  
The solution of a 3D scalar equation using a combination of finite difference and finite 

integral transform methods is presented. It is assumed that the medium of propagation is 
independent of one of the Cartesian coordinates defining the model; in the case 
considered here, the y  coordinate. This coordinate is removed from the finite difference 
process utilizing a finite Fourier integral (cosine) transform. The resultant problem is the 
solution of the scalar wave equation in 2.5D, that is, the amplitudes recorded on the 
synthetics are what could be termed true amplitudes (dynamic properties) as 3D 
geometrical spreading is incorporated. 

The run times for this 2.5D problem and a pure 3D finite difference problem are not 
similar. Also, only two dimensional arrays are required when this method is used, which 
provides a significant saving in computer resources. The trade off is that strict 3D 
modeling is quite limited. However, for 2D seismic lines in complex geometries this 
method produces proper kinematic and dynamic properties for the reflected, refracted and 
diffracted arrivals. 
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FIG. 1. Schematic of an example  model that may be treated using the method described here. 
The computational model employed is similar with a source located at 0Sz = , 0 Sx a< < , 

0 Sy c< < . 
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FIG. 2. Time and frequency plots of the Gabor wavelet for 0 30f =  and 4 and 5γ = . 
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FIG. 3. Schematic of shooting geometry. A single source as indicated and a n n×  surface array 
of receivers with x y sδΔ = Δ = . Other possible receiver lines are shown. Note that the receiver 

lines at an angle to the ( ),x y  spatial points have different spatial increments between receivers. 
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FIG. 4. Model 1 after Novais and Santos (2005). See details in text. 
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FIG. 5. After Novais and Santos (2005), Model 1, with Gabor wavelet 0 30f Hz=  and 4γ = . 
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FIG. 6. After Novais and Santos (2005), Model 1, with Gabor wavelet 0 60f Hz=  and 4γ = . 


