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Differential operators 3: The square-root derivative 

John C. Bancroft 

ABSTRACT 
Differential operators are used in many seismic data processes such as triangle filters 

to reduce aliasing, finite difference solutions to the wave equation, and wavelet correction 
when modelling with diffractions or migrating with Kirchhoff algorithms.  Short 
operators may be quite accurate when the data are restricted to low order polynomials, 
but may be inaccurate in other applications. 

This is the third of three papers on differential operators and deals specifically with the 
square-root derivative or rho filter.  The first paper deals with the first derivative and the 
second paper deals with the second derivative.  

The purpose of this paper is to evaluate visually the short operators that approximate a 
rho filter.   

APPLICATIONS 
The first paper in this series presents a number of applications for the different 

derivatives.  They are: 

1. The rho filter that applies corrections to the wavelet after diffraction modelling 
or Kirchhoff migration. 

2. Fast filtering in the time domain that differentiates the filter operator to delta 
functions and is then applied to a trace that has been integrated.  Convolving 
with the delta functions is equivalent to summing a few samples. 

3. Finite difference solutions to the wave equation 

Rho filter (copy from first paper) 
Modelling and migration should produce no change in a horizontal event, however 

some of these processes distort the wavelet.  This distortion is illustrated in Figure 1 that 
shows in (a) a portion of a horizontal event created with a zero-phase wavelet.  After 
modelling with diffractions this horizontal event should remain the same as the input, but 
there is a phase distortion as illustrated in (b).  When the event in (a) is migrated with a 
2D Kirchhoff algorithm, the event becomes that illustrated in (c).  These wavelet 
distortions are corrected using a rho filter (operator) that corrects the shape of the wavelet 
back to the zero phase shape of (a).  The rho filter modifies the phase and applies a taper 
to the amplitude spectrum. 
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a)    b)    c) 

FIG. 1.  An input event in a) is shown in b) after modelling with diffractions, and in c) after 2D 
Kirchhoff migration. 

ASSUMPTIONS 
I assume an array of data fn, that I call a trace.  The trace can be in either time or 

distance transforming into the frequency or wavenumber domains.  I will assume the 
trace to be in the time domain and refer to the transform domain parameters as frequency. 

The displayed results are created using MATLAB with code  
       \2008-Matlab\DifferentialOperatorSqrt.m 

INTRODUCTION 
Early Kirchhoff migration introduced a phase error into the wavelets.  A number of 

methods were used to correct the distortion such as a 45 degree phase shift filter, or by 
using a least squares approach to match the migrated wavelet with the input wavelet.  
Schneider (1978) provided the industry with the integral solution to the wave equation 
that required the input data to be filtered with differential operators.  For 3D, the data 
required a differential operator, while 2D data required a square-root differential 
operator.  This square-root derivative operator in known as the rho filter and is typically 
applied after a 2D Kirchhoff migration. 

Differentiators are filters or operators.  It is easy to describe the square of an operator 
by applying the initial operator twice.  We have seen that it is possible to approximate a 
second derivative by applying the first derivative twice.  The square-root of the second 
derivative is the original derivative.  Our objective is to find an operator, that when 
applied twice, will produce a derivative. 

In the frequency domain, the rho filter is a trivial task.  Convolution becomes a 
product, the squaring of an operator becomes a squaring process, and the square-root of 
an operator becomes a square root.  Defining the derivative to be jω  the square-root 
operator becomes jω .  We then get our time domain operator from the inverse Fourier 
transform.  However the time domain operator is quite complicated and choosing a 
suitable window is difficult.  For many applications, it may be better to perform the 
operation in the frequency domain. 

In the frequency domain we apply the operator twice with multiplication, i.e. 
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 j j jω ω ω× = . (1) 

In the time domain, I represent the rho operator as r(t), and compute it from the inverse 
Fourier transform, i.e., 

 ( ) { }IFr t jω= . (2) 

We apply r(t) twice to be equivalent of the derivative d(t), i.e., 

 ( ) ( ) ( ) ( ) ( )( ) *
d f t

r t r t f t d t f t
dt

⎡ ⎤∗ ∗ ≡ =⎣ ⎦ , 

or 

 ( ) ( )( )r t r t d t∗ = . 

Therefore we can now understand that given an operator ( )d t , the square-root of that 

operator ( )r t  needs to be convolved twice to get the original operator . 

THE RHO FILTER IN THE FREQUENCY DOMAIN 

The derivative defined in the frequency domain jω  is illustrated in Figure 1 and the 
square-root derivative jω  in Figure 2.  Both spectrums have large values near the 
Nyquist frequency that cause ringing in the time domain response.   

 

FIG. 1.  Spectrum of the derivative. 
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FIG. 2.  Spectrum of the square-root derivative.   

In the first half of the spectrum, the real and imaginary components are equal, but they 
are opposite in the negative frequencies, which occupy the right side of the spectrum.  As 
with the derivative, the discontinuity at the Nyquist frequency causes problems in the 
time domain that is displayed in Figure 3.  This figure was created with 512 frequency 
domain samples, but only the central 50 samples are displayed..    

 

FIG. 3  Time domain RSD operator. 

Note the oscillations due to the discontinuity at the Nyquist frequency. 

This operator was convolved with itself to produce the derivative operator.  The values 
close to time zero follow and demonstrate the rho filter is functioning correctly. 
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The oscillations can be reduced by including a taper in the frequency domain as 
illustrated in the next figures.  A cosine taper was applied in the frequency domain that 
started at 80% of the Nyquist frequency as illustrated in Figure 4a which produces a 
smoother operator in (b). 

 

a) 

 

b)  

FIG. 4.  The amplitude spectrum a) with a taper and b) the corresponding wavelet operator. 

Note the negative low frequency trend to the right of the operator and emphasized in 
its zoom.  It is this low frequency trend that creates problems in designing a small sample 
number operator. 
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ORIGINAL FILTER 
I developed a rho filter many years ago.  It has 15 negative values and 5 positive 

values for a total of 21 points.  The amplitudes are: 

-0.0010 -0.0030 -0.0066 -0.0085 -0.0060 -0.0083 -0.0107 -0.0164 -0.0103 -0.0194 

 -0.0221 -0.0705 0.0395 -0.2161 -0.3831  0.5451  0.4775 -0.1570  0.0130  0.0321 

  -0.0129 

This data is plotted in Figure 4.  This shape of this data is time reversed from the 
previous figure as it is ready for convolution.  

 

FIG. 5.  Old rho filter with samples from -15 to +5. 

The amplitude spectrum of this “old” operator is compared with a tapered amplitude 
spectrum in Figure 6a and the percent difference shown in (b). 
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a) 

 

b) 

FIG. 6.  The amplitude spectrum of the original rho filter a) and its percent error. 

This filter is still quite acceptable for seismic data as the low frequency error is below 
that of the data.  The high frequencies also extend to 150 hz.   

The corresponding real, imaginary, and phase are plotted in Figure 7, with the phase 
amplitude scaled by ten.  The phase value should be / 4 0.7854π = . 
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FIG. 7.  Real, imaginary, and phase of the original rho filter. 

ALTERNATE ESTIMATES 
Many attempts have been made to improve on the original filter.  In my latest attempt, 

I subtracted off (approximately) the negative low frequency amplitude, and windowed the 
data with a 21 point window as shown in Figure 8.  The plan is to use the windowed 
operator as a convolution, and replace the low frequencies with a recursive filter.  The 
results of this approach are shown in Figure 9 that displays the amplitude spectrum, and 
its percentage error. 

 

FIG. 8.  New rho filter with the windowed data. 
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a) 

 

b) 

FIG. 9.  New rho filter a) the amplitude spectrum, and b) the percentage error. 

The error in the main seismic band is quite reasonable, but there still remain a problem 
with the low frequencies. 

CONCLUSIONS 
Filters for the rho or square-root derivative were presented.  The best solution is still 

the original filter developed many years ago.  A new version has two parts; a convolution 
for the main part of the wavelet, and a recursive part for the low frequency.  This new 
version is still under development. 
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