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ABSTRACT

Full waveform inversion (FWI) is a powerful tool to build high-resolution velocity
models, from recorded seismic data. However, a major issue with FWI is that it fails at
reconstructing the low-wavenumber components in the absence of low-frequency infor-
mation in the data. Generally, for a limited-offset acquisition geometry, deep targets are
only sampled by reflected waves with narrow scattering angles, which makes such failure
inevitable. In this paper, we point out the limitation of conventional FWI when applied to
reflection data, and review an alternative approach to overcome this limitation. The new
waveform inversion formalism relies on decomposing the subsurface model into a back-
ground part that we seek to resolve, and a reflectivity part that we assume to be known.
We show that separating the decoupled velocity model into long-wavelength and short-
wavelength components permit us to extract the contribution of the reflected data to the
background part of the velocity model.

INTRODUCTION

Full waveform inversion (FWI) is an ill-posed data-fitting procedure that aims at re-
constructing the earth’s physical parameters by iteratively minimizing the least-squares
norm of the difference between the predicted and observed data (Lailly, 1983; Tarantola,
1984; Virieux and Operto, 2009). The rise of FWI, as a tool for velocity model building,
is due to the high-resolution velocity models that it provides (Pan and Innanen, 2015).

The resolution of the FWI reconstruction is related to the diffraction tomography prin-
ciple (Devaney, 1982; Miller et al., 1987; Wu and Toksöz, 1987; Brossier et al., 2015);
which relates the recoverable wavenumber k, sampled at a point diffractor (Figure 1), to
the local wavelength and aperture angle θ according to equation (1).

k =
4π

λ0
cos

(
θ

2

)
n (1)

where λ0 is the local wavelength, and n = qs+qr

‖qs+qr‖ (Figure 1).
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FIG. 1. Illustration of the relationship between the wavenumber k and the acquisition
geometry for a point diffractor. S denotes source, R denotes receiver, θ is the aperture
angle, x is a point diffractor, qs and qr are the slowness vectors, q = qs + qr, ω is the
angular frequency, and k is the recoverable wavenumber.

In a narrow-aperture acquisition geometry, where the depth of investigation is larger
than the offset range, the shallow area of the subsurface is sampled by reflections, refrac-
tions, and direct waves; while only reflections sample the deep section. According to equa-
tion (1), in the deep part of the model, due to the small range of θ in narrow-aperture ac-
quisition with smooth background velocity, only high-wavenumbers will be reconstructed,
while in the shallow part both low and high wavenumbers will be reconstructed (Brossier
et al., 2015); hence, a successful FWI requires the presence of long-offset data, low fre-
quency data, and an accurate starting model.

An alternative approach to the conventional FWI, which aims at retrieving the low-
wavenumber components of the velocity in areas sampled by reflected data only, is pro-
posed by Xu et al. (2012), which is known as reflection-based waveform inversion (RWI).
In this new approach, the velocity model is decomposed into a background/transmission
model that we seek to resolve and a reflectivity model that is assumed to be known, al-
lowing the emphasis on the transmission wavepaths of the reflected data in the inversion
process. There are three main differences between conventional FWI and RWI. First, the
primary goal of RWI is to invert for the background model, and not to obtain a high-
resolution model. Second, FWI uses the full wavefield in the inversion process, including
direct waves, refracted and reflected waves, while RWI uses only reflected waves. Third,
RWI relies on a migration/demigration process (Zhou et al., 2012).

The outline of this paper is as follows. First, we cover the derivation of the necessary
equations for and the theory behind RWI. Second, we demonstrate the effectiveness of
RWI by comparing its results to conventional FWI. Finally, we briefly discuss the process
of migration and demigration in Appendix A. Although we perform all the derivations in
the frequency domain, we carry out the inversion in time domain.

THEORY

Derivation

We start by define two equations in an acoustic medium[
52 + ω2m0

]
G0(rg, rs, ω) = δ(r− rs) (2)
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[
52 + ω2m

]
G(rg, rs, ω) = δ(r− rs) (3)

where m = m0 + δm is the actual subsurface model, m0 is the background model, δm is
the reflectivity model, G0(rg, rs, ω) is the predicted data sampled at rg due to a source at
rs, and G(rg, rs, ω) is the observed data sampled at rg due to a source at rs. It should be
noted that the wave equation is parametrized in terms of the slowness squared.

We define the misfit function as a least-squares norm given by

E (m0) =
1

2
‖δP(rg, rs, ω)‖2 , (4)

where δP(rg, rs, ω) is the data residual (equation 5).

δP(rg, rs, ω) = G(rg, rs, ω)−G0(rg, rs, ω). (5)

Taking the derivative of equation (4) in the vicinity of the model parameter m0 gives

∂E (m0)

∂m0(r)
= −

∑
rs,rg

∫
dω<

{
∂G0(rg, rs, ω)

∂m0(r)
δP ∗(rg, rs, ω)

}
, (6)

where

g(r) =
∂E (m0)

∂m0(r)
(7)

is the gradient, and ∂G0(rg ,rs,ω)

∂m0(r)
is the sensitivity or Fréchet derivative. The sensitivity

describes the changes in the wavefield due to changes in the model parameters.

Substituting m = m0 + δm into equation (3) yields[
52 + ω2m0

]
G(rg, rs, ω) = δ(rg − rs)− ω2δm(rg)G(rg, rs, ω), (8)

where its integral form solution is given by

G(rg, rs, ω) = G0(rg, rs, ω)− ω2

∫
dr′G0(rg, r

′, ω)δm(r′)G(r′, rs, ω)

⇒ δG(rg, rs, ω) = −ω2

∫
dr′G0(rg, r

′, ω)δm(r′)G(r′, rs, ω).

(9)

Using born series to eliminate G(r′, rs, ω) yields

δG(rg, rs, ω) = −ω2

∫
dr′G0(rg, r

′, ω)δm(r′)G0(r
′, rs, ω)

+ ω4

∫
dr′G0(rg, r

′, ω)δm(r′)

∫
dr′′G0(r

′, r′′, ω)δm(r′′)G0(r
′′, rs, ω)

+ . . . .

(10)

We next localize the perturbation model δm(r) by introducing the delta function so that

δm(r′) = δm δ(r′ − r), (11)
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which allows us to evaluate the integrals easily. By substituting equation (11) into equation
(10) we obtain

δG(rg, rs, ω) = −ω2G0(rg, r, ω)δmG0(r, rs, ω)

+ ω4G0(rg, r, ω)δmG0(r, r, ω)δmG0(r, rs, ω) + . . .

= −ω2G0(rg, r, ω)δmG0(r, rs, ω)[1− ω2δmG0(r, r, ω) + . . .].

(12)

Noting that the series expansion of 1
1+x

is (1−x+x2−. . .), equation (12) can be re-written
as

δG(rg, rs, ω) = −
ω2G0(rg, r, ω)δmG0(r, rs, ω)

1 + ω2δmG0(r, r, ω)

⇒ δG(rg, rs, ω)

δm
= −ω

2G0(rg, r, ω)G0(r, rs, ω)

1 + ω2δmG0(r, r, ω)
.

(13)

Taking the limit so that δm vanishes gives the conventional FWI kernel

∂G(rg, rs, ω)

∂m0

= lim
δm→0

δG(rg, rs, ω)

δm
= −ω2G0(rg, r, ω)G0(r, rs, ω). (14)

In conventional FWI, we tend to resolve and update a velocity model that consists of a
background part and a reflectivity part. In other words, to find an updated model mn+1,
we need to update a current model mn, which is composed of a background part and
perturbation part, by solving for a model update δmn. However, in RWI we are only
interested in updating the background model; hence, we need to take the derivative of
equation (9) with respect to the background model m0 to obtain

∂δG(rg, rs, ω)

∂m0

= −ω2

∫
dr′

(
∂G0(rg, r

′, ω)

∂m0

G(r′, rs, ω)

+G0(rg, r
′, ω)

∂G(r′, rs, ω)

∂m0

)
δm(r′),

(15)

where
∂G0(rg, r

′, ω)

∂m0

= −ω2G0(rg, r
′′, ω)G0(r

′′, r′, ω) (16)

and
∂G(r′, rs, ω)

∂m0

= −ω2G(r′, r′′, ω)G(r′′, rs, ω). (17)

Substituting equations (16) and (17) into equation (15) results in

∂δG(rg, rs, ω)

∂m0

= ω4

∫
dr′

(
G0(rg, r

′′, ω)G0(r
′′, r′, ω)G(r′, rs, ω)

+G0(rg, r
′, ω)G(r′, r′′, ω)G(r′′, rs, ω)

)
δm(r′).

(18)

4 CREWES Research Report — Volume 28 (2016)



Potential of RWI

By re-writing equation (18) into

∂δG(rg, rs, ω)

∂m0

= −ω2G0(rg, r
′′, ω)

[
− ω2

∫
dr′G0(r

′′, r′, ω)δm(r′)G(r′, rs, ω)

]

− ω2G(r′′, rs, ω)

[
− ω2

∫
dr′G0(rg, r

′, ω)δm(r′)G(r′, r′′, ω)

]
,

(19)

we note that the expressions within [·] can be replaced by the perturbed wavefield (equation
9) to obtain

∂δG(rg, rs, ω)

∂m0

= −ω2

(
G0(rg, r

′′, ω)δG(r′′, rs, ω) +G(r′′, rs, ω)δG(rg, r
′′, ω)

)
, (20)

where δG(rg ,rs,ω|m0)

∂m0
is the RWI kernel. In equation (20),G(r′′, rs, ω) corresponds to the ac-

tual source wavefield, however, since obtaining the actual source wavefield is not possible,
it is replaced with the modeled source wavefield G0(r

′′, rs, ω). The gradient of the misfit
function with respect to the background model m0 is obtained by substituting equation
(20) into equation (6) to give

g(r) =
∑
rs,rg

∫
dω ω2

([
δG(r, rs, ω)

]
×
[
G0(rg, r, ω)δP

∗(rs, rg, ω)

]

+

[
G0(r, rs, ω)

]
×
[
δG(rg, r, ω)δP

∗(rs, rg, ω)

])
,

(21)

where δG(r, rs, ω) is the demigrated source wavefield (Appendix A), G0(rg, r, ω) is the
receiver wavefield, G0(r, rs, ω) is the source wavefield, δG(rg, r, ω) is the demigrated
receiver wavefield, and δP ∗(rs, rg, ω) is the conjugated data residual. Equation (21) de-
pends on both the background model and the perturbation model (through δG(r, rs, ω) and
δG(rg, r, ω)).

The corresponding equation in time domain to equation (21) is given by

g(r) =
∑
rs,rg

∫ T

0

dt

([
δG̈(r, rs, t)

][
G0(rg, r, T − t) ∗ δG(rg, rs, t)

]

+

[
G̈0(r, rs, t)

][
δG(rg, r, T − t) ∗ δG(rg, rs, t)

])
,

(22)

where
[
G0(rg, r, T − t) ∗ δG(rg, rs, t)

]
is the back-propagated data residual wavefield,[

δG(rg, r, T − t) ∗ δG(rg, rs, t)
]

is the demigrated receiver wavefield, G̈ corresponds to
the second time derivative of G, and ∗ represents convolution. The parametrization of the
gradient (equations 21 and 22) is in terms of slowness squared

(
m(r) = 1

v(r)2

)
.
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Sensitivity Kernels

To understand the advantage of model decomposition we look at the contribution of
direct waves and reflected waves to the FWI and the RWI sensitivity kernels. The sen-
sitivity kernel describes the perturbation in the data domain due to a perturbation in the
model parameter (Chi et al., 2015). Equation (14) is the conventional FWI sensitivity
kernel in frequency domain. The corresponding FWI kernel in time domain, KFWI , is
given by the cross-correlation of the second time derivative of the source wavefield with
the time-reversed back-propagated receiver wavefield (equation 23).

KFWI = G̈(r, rs, t)⊗G(rg, r,−t), (23)

where ⊗ represents cross-correlation, and G(rg, r, t) satisfies{[
52 +m ∂2

∂t2

]
G(r, t) = 0

G(r, rg, t) = G(rg, rs, t),
(24)

and G(r, rs, t) satisfies [
52 +m

∂2

∂t2

]
G(r, rs, t) = δ(r− rs), (25)

where G(rg, rs, t) is the recorded data. The sensitivity kernel of RWI in frequency domain
is given by equation (20), and the corresponding kernel in time domain, KRWI , is given
by

KRWI = δG̈(r, rs, t|m0)⊗G(rg, r,−t|m0) + G̈(r, rs, t|m0)⊗ δG(rg, r,−t|m0), (26)

where δG̈(r, rs, t|m0) is the second time derivative of the demigrated source wavefield,
G(rg, r,−t|m0) is the time reversed receiver wavefield, G̈(r, rs, t|m0) is the second time
derivative of the source wavefield, and δG(rg, r,−t|m0) is the demigrated receiver wave-
field.

To construct the FWI and RWI sensitivity kernels, we use a two-layer model, where the
velocity of the first layer is 2000m/s and the velocity of the second layer is 3000m/s, and
the interface is at 0.6 km depth. In this model, a source is placed at (0.33, 0.33) km and
a receiver is placed at (0.66, 0.33) km, (Figure 2). In constructing the sensitivity kernels,
we use the full bandwidth by utilizing the time domain formalism of the kernels.
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FIG. 2. Velocity model used to generated sensitivity kernels. The velocity of the first layer
is 2000m/s and the velocity of the second layer is 3000m/s. S, 9, denotes the source
and R,5, denotes the receiver.

Analyzing the conventional FWI sensitivity sub-kernels (Figures 3a, 3b, and 3c) in-
dicate that with a smooth initial model, early iterations will update the low-wavenumber
components in the shallow part of the model (Figure 3a), and will update the high-wavenumber
components in the deep part of the model, (Figure 3b), (Chi et al., 2015). Figure 3b indi-
cates that the high-wavenumber update, in the deep section, will exhibit a migration-like
reconstruction (Brossier et al., 2015).
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(a) (b)

(c) (d)

FIG. 3. FWI and RWI sensitivity kernels. (a) FWI direct wave sub-kernel. (b) Migration
ellipse. This is the FWI reflected wave sub-kernel when model is smooth and does not
contain reflectivity information. (c) FWI reflected wave sub-kernel. (d) RWI sensitivity
kernel. We use a Ricker wavelet as a source function and the full bandwidth in generating
the sensitivity kernels.

Such behavior in the inversion process is a result of the absence of reflected waves in
the predicted data in early iterations. With increasing the number of iterations, the low-
wavenumber components in the deep part will start updating (Figure 3c); however, the
contribution of the high-wavenumber components is stronger; hence, the inversion process
will try to match the predicted data and observed data by updating the high-wavenumber
components (Chi et al., 2015). On the other hand, the RWI sensitivity kernel indicates that
the reflected waves contribute to updating the background model (Figure 3d). Moreover,
the predicted data in RWI will have reflected waves, as modeled data is generated through
a migration/demigration process (Zhou et al., 2012).

NUMERICAL EXAMPLE

To examine RWI, we use a three-layer model of dimension 5000m× 3000m (Figure
4). The model is composed of a background velocity of 2500m/s with a low-velocity
Gaussian anomaly, where the center of the lens has a velocity of 2200m/s. The first re-
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flector is at 3000m in depth, with a velocity of 2750m/s. The second reflector has a
velocity of 3000m/s, with a dipping angle. Fifty shots were used in this test, with the first
shot at x = 75m, the last shot at x = 7425m, and a shot spacing of 150m. There are 499
receivers in this test, with the first receiver at x = 5m, the last receiver at x = 7500m,
with receiver spacing of 5m. The recording time is 3.5 s and the time interval is 3.0ms.
A Ricker wavelet with 10Hz dominant frequency is used to generate the data. A constant
velocity model is used as an initial model with a velocity of 2500m/s (Figure 5). RWI is
formulated such that the observed data consists of only reflected waves; hence, we mute
direct waves in our observed data. We compare RWI results with FWI results for the same
model; however, in FWI we utilize the full recorded information.

FIG. 4. True velocity model.

FIG. 5. Initial velocity model.
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Figures 6 and 7 shows the conventional FWI gradient and the updated model, respec-
tively, after one iteration. As expected, conventional FWI recovered the reflectivity model,
but not the Gaussian anomaly that contributes to the background model. FWI failed in
retrieving the low-wavenumber components of the velocity model due to the lack of low-
frequency information in the data. As a consequence, the reflectivity model below the
Gaussian anomaly is unfocused and mispositioned. Figures 8 and 9 shows the RWI gradi-
ent and the inverted velocity model after one iteration, respectively. We note that, unlike
FWI, RWI recovered the general characteristics of the background model, and the mis-
placed reflectors in FWI are now correctly positioned.

FIG. 6. FWI gradient.

FIG. 7. Updated velocity model using FWI after one iteration.
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FIG. 8. RWI gradient.

FIG. 9. Updated velocity model using RWI after one iteration.

Figures 10, 11, and 12 are the RTM images produced by using the initial velocity,
the FWI inverted velocity, and the RWI inverted velocity, respectively, as a the migration
velocity. The migrated images using the initial velocity and the FWI velocity are both
unfocused due to the inaccuracy of the models. On the other hand, the migrated image
using the RWI inverted velocity shows better results and produces a well-focused image.
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FIG. 10. RTM image migrated using the initial velocity.

FIG. 11. RTM image migrated using the FWI inverted velocity.
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FIG. 12. RTM image migrated using the RWI inverted velocity.

CONCLUSION

In this paper, we showed that RWI is superior to FWI in retrieving long-wavelength
components when building velocity models from reflection data. The background model
does not generate backscattering; however, it controls the arrival times of reflected data.
As a result, an accurate background model is necessary for seismic migration coherency.

APPENDIX A: SEISMIC MIGRATION AND DEMIGRATION

In FWI, the initial model is normally a smooth model that doesn’t generate any reflec-
tions. As a result, for early iterations, the predicted data will only contain direct waves,
which causes the FWI to fail in retrieving the low-wavenumber components of the model,
which will result in cycle-skipping if the initial model is not accurate and close enough to
the actual background model (Zhou et al., 2012). This failure is attributed to the fact that,
at later iterations, FWI will try to minimize the data residual by updating the reflectivity
model, constructed from migrating the reflection data residual, instead of the background
model (Chi et al., 2015). The low-frequency and high-frequency components of the veloc-
ity model are decoupled, as the low-frequency components do not produce any reflections,
and it only controls the arrival time of reflected data generated by the high-wavenumber
components (Zhou et al., 2012). As a result, modeling by migration/demigration process
produces reflected waves in the predicted data, even though the velocity model in use has
only low-wavenumber components.

The first step in the migration/demigration process is to migrate the observed data,
using a true-amplitude migration method, to generate the reflectivity model. The migrated
image I(r), (equation A-3), is formed by multiplying the source wavefield G(r, rs, ω) that
satisfy [

52 + ω2m
]
G(r, rs, ω) = δ(r− rs), (A-1)
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with the conjugated receiver wavefield G∗(rg, r, ω) that satisfy{
[52 + ω2m]G(r, ω) = 0

G(r, rg, ω) = G(rg, rs, ω),
(A-2)

where G(rg, rs, ω) is the observed data at the receiver location rg due to a source at the
location rs, which gives an RTM migrated image.

I(r) =

∫
dω G(r, rs, ω)×G∗(rg, r, ω). (A-3)

Then the demigrated data (equation A-4), is produced by using the migrated image as a
source in depth in a concept similar to the exploding reflector model. The source term
in the wave equation, used to generate the demigrated data, is created by correlating the
source wavefield with the migrated image (equation A-5).

dcal(rg, rs, ω) = δG(rg, rs, ω), (A-4)

where δG(rg, rs, ω) is given by[
52 + ω2m

]
δG(r, rs, ω) = I(r) ·G(r, rs, ω). (A-5)
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