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ABSTRACT

The estimation of rock physics properties from seismic attributes is a nonlinear inverse
problem. We investigate three global optimization methods: simulated annealing, genetic
algorithm, and neighborhood algorithm for solving this problem. The input data are P-
wave velocity, S- wave velocity, and density, and the rock physics properties to estimate
are porosity, clay content, and water saturation. The two parameter sets are connected by
an assumed rock physics model. Numerical examples are suggestive that the neighborhood
algorithm is most efficient for improving data fit for the experiment we set up; porosity and
clay content can be accurately estimated, whereas the water saturation estimate is prone
to large errors. We explain this as a consequence of the low sensitivity of velocities and
density to this property. However, simultaneous inversion for the whole set of the rock
physics properties is problematic if the input data are erroneous. Consequently, we restrict
the inversion to porosity and clay content only and assume a priori information of the exact
water saturation. This makes the inversion stable with noisy data. Finally, we illustrate the
application of the proposed global optimization method using the high-resolution results of
elastic full waveform inversion (EFWI).

INTRODUCTION

In seismic reservoir characterization, the estimation of rock and fluid properties is gen-
erally achieved in two steps: seismic inversion and rock physics inversion (Bosch et al.,
2010; Grana, 2016). In seismic inversion, we invert the seismic data (e.g., amplitude, time,
waveforms) for the elastic model, such as velocities, density and elastic moduli. Seismic
inversion can be performed using complex forward models and inverse algorithms, for ex-
ample, full-waveform inversions (Tarantola, 2005; Brossier et al., 2009; Pan et al., 2018),
or using methods that are less computationally intense such as AVO (amplitude versus off-
sets) inversions (Buland and Omre, 2003). In rock physics inversion, we invert the elastic
attributes obtained from seismic inversion to estimate a model of rock properties, such
as porosity, lithology, and fluid saturations (Doyen, 2007; Mavko et al., 2009). The rela-
tions between elastic attributes and rock properties are generally nonlinear, therefore, the
inversion requires nonlinear optimization algorithms, such as gradient-based (local opti-
mization) methods (Nocedal and Wright, 2006), or global optimization algorithms, such as
simulated annealing and genetic algorithms (Sen and Stoffa, 2013).

For the rock physics inversion, the misfit surface as a function of rock physics pa-
rameters that are described by the mismatch between the predicted and observed elastic
attributes may be complicated and characterized by multiple hills and valleys. Local opti-
mization algorithms such as gradient-based methods typically attempt to find a local mini-
mum in the close neighborhood of the starting model. Thus these algorithms will miss the
global minimum if the starting solution is nearer to one of the local minima than the global
minimum (Sen and Stoffa, 2013). By contrast, the global optimization methods such as
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simulate annealing and genetic algorithm involve the random sampling of the whole model
space, avoiding the convergence toward a local minimum (Dupuy et al., 2016).

The main factor that has slowed the application of global optimization algorithms to
geophysical problems is their high computational demand. For example, If each model
parameter can take M possible discrete values and there are N model parameters, then
there are MN possible models to be tested. Typically, model spaces of the order of 5050

or higher are common (Sen and Stoffa, 2013). Therefore, it is impractical to apply these
methods to geophysical problems such as elastic full waveform inversion (EFWI), given
the high cost of forward modeling and the large dimensionality of the model. However, for
the rock physics inversion, the computational burden can be significantly alleviated. One
reason is that the solutions of rock physics modeling are generally analytical, so the forward
process is very fast. Another reason is that the elastic attributes of a specific grid point of
model space is uniquely decided by the rock physics parameters of this point, therefore the
transformation from elastic to rock properties can be done point by point. This allows a
parallel computation for multiple grid points of small model dimensionality.

We investigate several well-developed global optimization methods for the rock physics
inversion problem. Our goal is to seek an optimal solution which is corresponding to the
lowest data misfit, although these methods can be applied as well in a statistical framework
to estimate the uncertainties in the derived result. The report is structured as follows: first,
we describe the underlying fundamental principles on which these algorithms are based;
second, we conduct a single-point test for each algorithm. The velocities and density of
a sample computed by rock physics modeling is used as input to estimate its rock physics
properties. Then, we test the selected algorithm on pseudo-well logs to examine how errors
in the input data affect the inversion. Finally, we combine EFWI for elastic attributes and
the global optimization scheme to predict rock physics properties.

THEORIES AND METHODS

The inverse problem consists in the extraction of models (rock physics parameters)
from input data (elastic attributes) and is formulated as

d = g(m). (1)

In our approach, the model vector m comprises of three rock physics parameters: porosity,
clay content, and water saturation (P,C, Sw); the data vector comprises of three elastic
parameters: P-wave velocity, S-wave velocity and density (VP, VS, ρ); the function g is a
rock-physics relation: the KT model (Kuster and Toksöz, 1974). This function is nonlinear
and the inverse of g cannot be computed. The solution of the system has to be obtained by
optimization methods. In our case, computation of the forward model is very fast (com-
putation of analytical relations) and the number of model parameters is low (three for a
point-by-point inversion).

The optimization aims to minimize a scalar function (misfit function) describing the
discrepancy between the observed data dobs and calculated data g(m) (by forward model-
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ing). We use the L2 norm to compute the misfit as

E(m) =
1

2
[(dobs − g(m))TC−1d (dobs − g(m))], (2)

where C−1d is the data covariance matrix, which contains information on data uncertainties.

We study three global optimization methods: simulated annealing (SA), genetic algo-
rithm (GA) and neighborhood algorithm (NA). They belong to the category of directed
Monte Carlo methods. Unlike the uniform Monte Carlo method, which by definition is a
completely blind search since each new sample is independent of the previous samples, the
three algorithms make use of previous samples to guide their search. We also note that
each algorithm has several variants developed to speed up its convergence, for example,
heat bath SA, fast SA, and GA with multipoint crossover, we use in this work their most
basic versions.

Simulated Annealing

SA is based on an analogy with the physical process of annealing, which occurs when
a solid in a heat bath is initially heated by increasing the temperature such that all the
particles are distributed randomly in a liquid phase. This is followed by slow cooling such
that all the particles arrange themselves in the low-energy ground state where crystallization
occurs. In geophysical inverse problems, the energy function is identified with the objective
function E(m) (equation2). We are interested in finding the state (or model) to minimize
this function.

SA is implemented using an algorithm that simulates the physical annealing process.
SA based on the Metropolis algorithm can be described as follows (adopted from course
materials of Dr. Jan Dettmer):

1) Pick starting model m with upper and lower bounds for all parameters, and starting
temperature T .

2) Perturb m to m′, therefore, the difference in the energy between the two states ∆E =
E(m′)− E(m).

3) Accept or reject m′ as a new state according to:

a. if ∆E ≤ 0, accept, m = m′.
b. if ∆E > 0, draw random number ξ ∼ U(0, 1).

i. If ξ ≤ exp(−∆E/T ), accept, m = m′.
ii. if ξ > exp(−∆E/T ), reject m′ and return to m.

4) Repeat steps 1 and 2 many times and periodically reduce T by a small amount.

Therefore, SA provides a random walk that always accepts a downhill step (in E) and
sometimes accepts an uphill step (allows escape from local minima). As T reduces, prob-
ability of accepting uphill steps decreases, and our search spends more time in regions of
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minima, but can climb out. As T approaches zero, probability of accepting uphill steps also
approaches zero, and eventually no more downhill steps are available, leading SA converge.

Genetic Algorithm

GA is based on an analogy with the processes of biologic evolution. Unlike SA, an
initial population of models is selected at random, and the GA seeks to improve the fitness
of the population generation after generation. This is principally accomplished by the ge-
netic processes of selection, crossover, and mutation (Sen and Stoffa, 2013). Also, because
GA works with models that are coded in some suitable form, we need to design a coding
scheme that represents the model parameters. The basic steps of GA are:

1) Coding. In the simple binary coding scheme, each bit corresponds to a gene that can
take a value of 0 or 1, and each individual in the population is completely described
by its bit string or chromosome.

2) Selection. Once the fitness (data fit) of each individual model in the population is
determined, the selection pairs individual models for reproduction. Models with
higher fitness values are more likely to get selected.

3) Crossover. Once the models are selected and paired, crossover allows genetic infor-
mation between the paired models to be shared. New models will be generated via
the exchange of some information between the paired models.

4) Mutation. Mutation is the random alteration of a bit, which represents a random walk
in model space.

After mutation, a new population of models is generated, and it often contain new mod-
els and some which are identical to previous models. We then repeat the genetic processes,
i.e., from step 2) to step 4), many times to update the population.

Neighborhood Algorithm

NA is proposed by Sambridge (1999), which was motivated by a fundamental question:
How can a search for new models be best guided by all previous models for which the
forward problem has been solved (and hence the data misfit evaluated). To address this,
NA makes use of the geometrical constructs known as Voronoi cells to derive the search
in model space. Each cell is simply the nearest neighbor region about one of the previous
samples. For example, the Voronoi cell about point mi is given by

V (mi) = {x|‖x−mi‖2 ≤ ‖x−mj‖2 for j 6= i}. (3)

The algorithm uses the spatial properties of Voronoi cells to directly guide the sampling of
parameter space. It can be summarized in four steps:

1) Generate an initial set of ns models uniformly (or otherwise) in parameter space;

4 CREWES Research Report — Volume 32 (2020)



rock physics inversion

2) Calculate the misfit function for the most recently generated set of ns models and
determine the nr models with the lowest misfit of all models generated so far;

3) Generate ns new models by performing a uniform random walk in the Voronoi cell
of each of the nr chosen models (i.e. ns/nr samples in each cell);

4) Go to step 2.

The philosophy behind the algorithm is that the misfit of each of the previous models
is representative of the region of space in its neighborhood (defined by its Voronoi cell).
Therefore at each iteration new samples are concentrated in the neighborhoods surrounding
the better data-fitting models. In this way the algorithm exploits the information contained
in the previous models to adapt the sampling.

NUMERICAL EXAMPLES

Single-point test

We consider a sample with porosity, clay content and water saturation of 0.1, 0.2, and
0.3, respectively. The corresponding elastic response, P-wave velocity, S-wave velocity,
and density, are computed by rock physics modeling based on the KT model, namely
(VP, VS, ρ) = KT(P,C, Sw). The ranges of possible values in model space are 0 ≤ P ≤
0.4, 0 ≤ C ≤ 1, and 0 ≤ Sw ≤ 1. The example is chosen to illustrate how the three algo-
rithms work to predict the model m = (P,C, Sw) from the data d = (VP, VS, ρ). Notably,
no exhaustive testing was done and we do not expect the values to be in any way perfect.
If an extremely large number of random walks is allowed, each algorithm can resemble a
grid-search method, which involves searching through every point in model space, but this
is not usually a practical approach.
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FIG. 1. Simulation results using Metropolis SA. Variations of (a) data misfit and (b) the inverted
model as a function of temperature.

Figure 1 shows the evolution of data misfit and the inverted model using Metropolis SA.
We employ a cooling schedule Tk = T0(0.9)k, where T0 is the starting temperature and k
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is the temperature step (or iteration number). The starting temperature T0 = 200 is picked
so that most random walks are accepted in the beginning of simulation. As the temperature
reduces, the probability of accepting uphill steps decreases (Figure 1a). Eventually the
algorithm converges to near the global optimal solution within 250 iterations. The porosity
and clay content are correctly estimated, whereas the inverted water saturation deviates
slightly from its true value.
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FIG. 2. Simulation results using GA. Evolution of (a) data misfit and (b) the best-fit model.
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FIG. 3. Simulation results using NA. The dots represent the models produced by NA and are
color-coded by data misfit. The true model is denoted by the red cross.
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Figure 2 shows the simulation process using GA. We use a population size of 100 mod-
els, a crossover probability of 0.5, and a mutation probability of 0.5. Unlike the SA curve
(Figure 1a) where an uphill step is allowed, in GA the best-fit model of the current gen-
eration is saved for the next generation, making GA always converge toward models with
lower data misfit (Figure 2a). The best-fit model is reasonably good after 100 iterations.

Figure 3 illustrates the process of searching the model space using NA. At each iteration
the NA generates 200 samples of a uniform random walk inside each of the Voronoi cells of
the current five best models (i.e. ns = 200, nr = 5). The initial 200 samples are generated
randomly. As the algorithm proceeds, the information in the misfit-surface is exploited to
concentrate sampling in the regions where the misfit is low. Consequently, the porosity
and clay content are well estimated, with only one main minimum located close to the true
value in the P − C space. However, the water saturation is not well estimated, displaying
several local minimum.
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FIG. 4. Sensitivity study. Variations of (a) velocity and density and (b) data misfit as a function of
porosity and water saturation.

We observe in the preceding example that water saturation is more difficult to estimate
than porosity and clay content. This is explained in Figure 4. The rock physics template
in Figure 4a is generated by fixing C and calculating the velocity and density for each
combination of P and Sw. It illustrates that VP and ρ are far more sensitive to P than to
Sw (note that the Sw is given a wider range). The contour plot in Figure 4b reveals that
the misfit function has a flat trough with respect to Sw.

We compare the three algorithm in Figure 5, where the misfit function is plotted against
the number of models for which the forward problem has been solved. There are three
runs in each case. We note that the misfit reduction of NA has a more favorable character,
exhibiting more large steps in the early stage. As a result, two of the three NA curves have
lower data misfits than the best SA and GA curves. Therefore, with the specific details we
design for the three algorithms, NA is most efficient and is therefore selected for our further
study on larger models.
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FIG. 5. Data misfit reduction for three runs of (a) SA, (b) GA, and (c) NA.
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Noise test on pseudo-well logs

In this section we test the robustness of the method in the presence of additive random
noise. We generate pseudo-well-logs of P , C and Sw, and use them to compute the logs
of VP, VS and ρ based on the KT model. These logs are denoted by the black solid lines in
Figure 6. If the exact velocity and density logs are used as input data for the rock physics
inversion, the P and C logs can be accurately reconstructed, whereas the Sw estimate
exhibit visible oscillation around the true model. As mentioned in the previous section,
this is due to the very low sensitivity of velocities and density to Sw. Nonetheless, the Sw
estimate is acceptable since it captures the major structures.
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FIG. 6. Test with noise-free data. The back lines denote the true models and the blue lines denote
the inverted models. The true elastic models are used as input data for the rock physics inversion.
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FIG. 7. Test with noisy data. Mild Gaussian noises are added to the elastic models, as denoted by
the black dashed lines. The blue lines denote the inverted models.

However, after we add some mild Gaussian noise to the input data, as denoted by the
black dashed line in Figure 7, the inverted rock physics properties become far from sat-
isfactory. The relatively small errors as they appear in the elastic model are magnified
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significantly in the P , C and Sw recoveries. The estimate of Sw appears to fair the worst,
covering the entire search space. We conclude that the simultaneous inversion of the three
rock physics parameters is ill-conditioned (i.e., lack of stability and robustness), as the
model is very sensitive to the errors in the data.

Given that it is difficult to invert the whole set of (P , C, Sw) from noisy data, we
introduce prior information to the inversion, expecting to make it better-posed. We assume
the exact Sw is known, which is clearly a favorable case, and we invert only P and C.
The result is shown in Figure 8. We observe a significant improvement in the P and C
recoveries, which exhibit mild oscillation around the true model.

4 4.5

0

0.2

0.4

0.6

0.8

1
2.4 2.6 2.8

noisy input data

2 2.2 0.1 0.2 0.3

true model inverted model

0.4 0.6

FIG. 8. Test with noisy data. Only porosity and clay content are inverted, assuming a priori infor-
mation of the exact water saturation model

Rock physics inversion using EFWI results

In this section we present synthetic example to combine the high-resolution result of
EFWI with the rock physics inversion using the proposed global optimization method.
For the EFWI algorithm, a 2D, frequency-domain, three parameter elastic inversion is set
up. We select a 1km×1km part of the elastic Marmousi2 model and assign rock physics
property values to each cell. Figure 9 shows the true elastic model, the initial model which
is a smoothed version of the true model, and the EFWI result. We observe that although the
deeper part of the elastic model is slightly underestimated, the inversion result is reasonably
accurate, capturing the main structures. The recovered elastic model is next used as input
data for the rock physics inversion.

In Figure 10 we plot the true porosity and clay content models, which are connected
to the true elastic model via the KT relation, and the inverted P and C models. Again,
the inversion is achieved via a point-by-point conversion from the elastic model to the rock
physics properties using the neighborhood algorithm. We observe that both the structure
and values of the P model are well recovered. The inverted C model, on the other hand,
recovers the structure reasonably well but exhibits visible areas either overestimated or
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underestimated. This likely originates from the errors in the EFWI-derived elastic model,
as shown in the vertical profiles in Figure 11.
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FIG. 11. Vertical profiles of the true and inverted models at lateral position 0.5km. The inverted
elastic models from EFWI are used as input data for the inversion of rock physics properties.

CONCLUSIONS

In this work we studied three global optimization methods: simulated annealing, ge-
netic algorithm, and neighborhood algorithm for a rock physics inversion problem: invert-
ing porosity, clay content, and water saturation from velocities and density. We found that
the neighborhood algorithm is more efficient in reducing data misfit for the experiment
we set up, however this conclusion may vary with user-defined parameters of the algo-
rithms. We illustrated that the simultaneous inversion of the three rock physics parameters
is ill-conditioned because it is very sensitive to the errors in the data. We then created a fa-
vorable scenario by using the exact water saturation as a priori information and only invert
for porosity and clay content. This makes the inversion of the two parameters stable with
noisy data. The proposed approach can be combined with EFWI for a sequential inversion
for rock physics properties: first the elastic attributes are estimated using EFWI, they are
next transformed to rock physics properties using the global optimization method.
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