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ABSTRACT

Prior information can be a powerful tool in seismic inversion that can substantially im-
prove on the results that seismic data alone can provide. Knowledge about clustering of
rock physics properties may be especially significant, but this type of information is prob-
lematic in full waveform inversion due to the local optimization methods which are typi-
cally used. Here, we propose a regularization tunneling strategy for full waveform inver-
sion, in which global regularization information is partially accounted for. By introducing
the potential for elements of the subsurface model to tunnel between clusters, this approach
is able to overcome obstacles associated with local minima in regularization terms from a
priori data. We test a tunneling inversion approach on a simple synthetic problem, and find
that when information about rock physics clustering is available, the proposed technique
has the potential to better use this information than a conventional inversion strategy.

INTRODUCTION

Seismic inversion techniques, like full waveform inversion (FWI), are typically driven
by objective function minimization (Tarantola, 1984). In these methods, an objective func-
tion is defined such that good models have small objective function values, while poor
models have large objective function values. The problem of minimizing the objective
function is then equivalent to finding the best model (by the metric of the chosen objec-
tive function). Generally, an objective function consists of two key parts. One part of the
objective function rewards models which accurately reproduce the measured data. This
term drives the inversion to use the measured data to improve the model. The other part
of the objective function is the regularization term. This term rewards models which are
consistent with our prior information about the subsurface. If the data-fit term were ne-
glected in inversion, the inversion would learn nothing new about the subsurface, while if
the regularization term were neglected, the inversion may produce a result consistent with
the data considered, but not consistent with our other sources of information. Both terms
play major roles in ensuring that a good inversion result is obtained (Tarantola, 2005).

While some inversion approaches are able to use global optimization techniques, the
minimization of the objective function in FWI is usually restricted to local optimization
due to the computational cost of the problem (Virieux and Operto, 2009). With this type of
approach, the local behaviour of the objective function becomes very important. Because
local optimization techniques exclusively consider update directions which locally reduce
the objective function, certain types of model-space steps are discouraged. The data-fit
term of objective functions will discourage model-space steps which locally decrease the
model fit. Similarly, regularization terms will discourage steps which locally move away
from regions of model space which are a priori likely. While these behaviours are highly
desirable in the vicinity of the global minimum, they can also cause problematic conver-
gence to local minima. In the cycle-skipping phenomenon, for instance, an inversion can
be trapped at a local minimum because short steps towards the global minimum actually
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FIG. 1. Penalty term well suited to local optimization (left) and penalty term representing clustering
(right). Note that several local minima exist in the clustering case.

decrease the data fit. These problems can be very challenging to solve in FWI.

One important source of a priori information in many geophysics problems is lithology.
Based on geologic knowledge of a region, we may know that only certain types of rocks are
likely to be found and, from study of those rock types, we may know which combinations
of physical properties (density, bulk modulus, etc.) are feasible. If the feasible relations of
physical properties form a single cluster, then the corresponding regularization term will
usually be well suited for local minimization approaches. If, on the other hand, the possible
physical properties form multiple, separated clusters, there will be several local minima in
the regularization problem, which could seriously hamper the inversion. These two cases
are illustrated in figure 1. The challenge in the multi-cluster case is that an element of
the model that is initially classed in the wrong cluster will be strongly discouraged from
changing clusters by the regularization term due to the local optimization techniques used.

To allow for a change of clusters in FWI, we propose a strategy for including non-
local regularization information in the inversion. This means that instead of considering
only the derivatives of the regularization term at a given point in model space, we will also
consider the value of the regularization term at other points in model space. While this type
of approach would be infeasible for the data-fit term of the objective function due to the
computational cost of wavefield modeling, the regularization term will typically require no
such modeling, and so can be evaluated at many models at negligible cost. Specifically,
we propose here a regularization tunneling approach, wherein model elements which push
strongly against the regularization terms in their local clusters are moved to other clusters,
based on our global knowledge of the regularization function.

THEORY

The principle of the approach we suggest is relatively simple. First, we suggest that
model elements which push only slightly against the regularization function likely do so
because of minor disagreements between the local character of the data-fit function and the
regularization term, and that these elements need no non-local correction. Model elements
which push strongly against the regularization function, however, are likely elements that
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the data-fit is pushing towards another cluster of the regularization term. If this is the case,
these elements should be allowed to “tunnel” directly from their current location in model
space to an acceptable region in the other cluster.

For the tunneling approach we propose, we assume that the regularization function (or
at least the key part of it for our tunneling approach) is defined as a sum over elements of the
finite-difference model. This function should take all of the physical properties estimated
at a given element of the model, and assign a regularization penalty term to the element
based on how well or poorly it corresponds to expected rock physics relations. With this
type of regularization, the algorithm we propose is as follows. At each iteration of the
inversion, a local optimization strategy (conjugate gradient, L-BFGS, truncated Newton,
etc.) is used to calculate a descent direction, and the model is updated by choosing an
appropriate step length in this direction. In a conventional local optimization, the next
iteration would begin after the model was updated. In our approach, we instead follow each
model update with a tunneling step. In the tunneling step, we calculate for each element
a potential, which quantifies how strongly the element pushes against the regularization,
and a momentum, which estimates the model-space direction the element would move in if
there were no regularization. The calculated potential and momentum are then fed into a
tunneling probability function, which assigns a probability that the element is tunneled by
having its physical properties changed to match those of an acceptable region in another
cluster. The tunneling probability function should be large if the potential is high and the
momentum points near another acceptable region of model space, and should be small if
only one or neither of these conditions are met. After the decision whether to tunnel for
each element is made based on the tunneling probability function, the appropriate elements
are tunneled, and the next iteration of the inversion begins.

Possible definitions of key functions

While the preceding section outlines the algorithm in principle, we have explained only
the intent of the potential, momentum and tunneling probability function terms. The spe-
cific choices made for these terms may play a major role in determining how a regulariza-
tion tunneling approach performs in practice. Accordingly, we provide some motivations
for specific choices of these terms in this section.

Potential

Perhaps the most natural choice for the potential term is simply the regularization
penalty incurred by each model element. As this penalty term is designed to push the
model toward acceptable regions of model space, the larger this term is, the more strongly
the data must be pushing toward other solutions. While this penalty term may be problem-
atic in very specific cases, we expect that it will generally work as an acceptable potential.

Momentum direction

This term should be designed to estimate the direction that the element would have been
moved in by the inversion if no regularization were considered. A very simple approach
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to calculating this term is to re-compute the descent direction, omitting the contribution
of the regularization. This should result in a viable momentum, providing useful infor-
mation about the model-space direction the data suggest. This approach does, however,
have some potential drawbacks. While this recalculation step should incur little additional
computational or memory cost in some optimization approaches (e.g. conjugate gradient
or L-BFGS), these are approaches in which Hessian information is either neglected or in-
ferred from previous model iterates. The large, abrupt steps introduced by tunneling could
greatly interfere with accurate Hessian estimation in these approaches. Other methods,
like truncated Newton optimization, do not rely on previous iterates to provide Hessian
information, but do incur a considerable computational cost in estimating the effect of the
Hessian, which would have to be reduplicated in order to calculate a regularization-free
descent direction. An alternate approach to determining a momentum would be to define
it as the gradient of the regularization term with respect to the element’s parameters. This
calculation is simple, and naturally identifies the direction the data most push against the
regularization. This direction may not be ideal, however, as this will generally be the di-
rection the data would push if no regularization existed. In this report, we will consider
a regularization-free truncated Gauss Newton step direction as the momentum. While this
incurs extra computational cost, it should give us a good idea of how the approach performs
in an ideal case.

Probability function

The tunneling probability function plays a major role in the proposed algorithm, using
the potential and momentum to determine both whether a given element tunnels, as well as
where it tunnels to. There are many different ways to formulate such a function, here we
outline the one we consider in this report. First, we define a base probability of tunneling:

pb = γψ, (1)

where ψ is the potential, and γ is a constant scale factor chosen for the inversion. The
base probability of tunneling, pb is the probability that an element will tunnel if there is an
acceptable region in another cluster in the direction of the momentum. While it would be
possible to use pb as the complete tunneling probability, this may be overly restrictive, as
it may often be the case that the momentum does not point directly at another cluster. To
help address this issue, we define the tunneling probability as

p(r̂θ) = pbfθ(r̂θ, r̂m)g(r̂θ), (2)

where r̂θ is a unit vector, r̂m is the unit vector for the momentum, fθ is a function that is
equal to 1 when r̂θ = r̂m and grows smaller as the angle between these directions grows,
and g is a function that returns 1 if there an acceptable region of model space in the direction
r̂θ and returns 0 otherwise. This function has the advantages of not requiring that the
momentum point directly at another cluster, and providing greater probability for clusters
that have a larger cross-sectional area from the element considered. After assembling p(r̂θ)
for a representative sample of directions with fθ(r̂θ, r̂m) 6= 0, we can compare it with a
random number. If the number is greater than the sum of p, no tunneling occurs, otherwise,
the element is changed to have the properties of a random, acceptable point in the the
appropriate direction r̂θ.
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FIG. 2. True vP and ρ used in the synthetic test.

FIG. 3. Probability density as function of element vP and ρ.

NUMERICAL EXAMPLE

In this section, we consider a simple synthetic example to illustrate the basic features
of the approach. The true subsurface properties, used to generate the data, are shown in
figure 2. This is a small two dimensional model, 500m by 500m in size, with a grid spacing
of 10 m in both directions. Three different rock-types are present in this model, each
with a different mean and standard deviation for P-wave velocity, vP , and density, ρ. The
probability distribution for vP and ρ is shown in figure 3. While such specific information
would be expected to greatly aid the inversion process, conventional FWI will struggle to
cope with the clustered nature of the a priori information. We define a simple, sigmoidal
regularization term, such that the half-maximum amplitude is reached where the probability
density is 10% the maximum probability density. The resulting regularization, as a function
of vP and ρ, is shown in figure 4.

The starting model used for the inversion was a constant medium, corresponding to
one of the rock physics clusters, with vP = 3700m/s and ρ = 2000kg/m3. We consider
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FIG. 4. Regularization penalty term as function of element vP and ρ.

two possible acquisition geometries for the synthetic tests: a surface acquisition in which
one line of sources and one line of receivers are located near the top of the model, and a
more comprehensive acquisition, in which the surface acquisition is augmented by a line
of receivers at the bottom of the model. In the inversion, we consider 20 frequency bands
of four frequencies each. The frequencies in each band are linearly spaced from a low
frequency of 1 Hz to a high frequency that begins at 2 Hz and increases with each FWI
iteration to a maximum of 20 Hz. At each frequency band, one iteration of truncated Gauss
Newton (TGN) optimization is used, with ten inner iterations per FWI iteration. In the
tunneling approach, the inner loop is repeated at each iteration in order to calculate the
momentum term.

The inversion results for the surface and comprehensive acquisition geometries are
shown in figures 5 and 6, respectively. In both of these results, there is some FD cell-level
noise; isolated cells have assumed very different values than the bulk of their neighbors. As
this is an undesirable feature of the inversion result linked to the probabilistic nature of our
tunneling approach, we apply an edge-preserving filter before further analyzing the results.
The filter we use examines the seven by seven FD cell region around each element of the
output model. If the element is in the same cluster as a chosen fraction of the elements in
this region (we use a 40% threshold), then it is unchanged, otherwise it is moved to a ran-
dom set of acceptable values in the majority cluster for this region if a majority exists, and
to the background model otherwise. The filtered results are shown in figures 7 and 8 for
the surface and comprehensive acquisitions, respectively. In the comprehensive acquisition
case, the inversion result matches the true model very closely, recovering both anomalies
effectively, and making minimal updates elsewhere in the model. In the surface acquisi-
tion case, the circular anomaly on the right side of the model is still recovered accurately,
and the interior portion of the left anomaly is also correctly identified. In this case there
are more spurious minor changes in the model, but overall the inversion result is a good
estimate of the true model.
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FIG. 5. Estimated vP and ρ after inversion of surface-only data.

FIG. 6. Estimated vP and ρ after inversion of comprehensive acquisition geometry data.

FIG. 7. Filtered surface-only inversion result. Compare with figures 5 and 2.
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FIG. 8. Filtered comprehensive acquisition geometry inversion result. Compare with figures 6 and
2.

FIG. 9. Estimated vP and ρ after inversion of comprehensive acquisition geometry data without
tunneling. Compare with figures 8 and 2.

For comparison, we have also tested the same inversion problem with two conventional
FWI strategies, using the comprehensive acquisition with no tunneling component. In the
first approach, the regularization term is preserved. The result of this inversion is shown in
figure 9. In this case, the inversion has moved both anomalies toward their true values, but
has been prevented from large updates away from the starting cluster by the regularization
term. Consequently, the inversion is held back by the regularization term in this example,
and the inversion result is very poor. In a second approach, the regularization term is omit-
ted in order to prevent the convergence problems. The result of this approach is shown in
figure 10. In this case, the data are more free to improve the model, so there are significant
improvements over figure 9. By completely discarding a priori information, however, this
approach has failed to reproduce the true model as accurately as the tunneling approach,
even in the case where the tunneling approach uses only surface data (figure 7).

DISCUSSION

While the filtered results shown in the previous section accurately estimate the true
model, the need for filtering suggests that the current implementation of this approach
could be improved. The cause of the noisy elements in these examples is likely the proba-
bilistic approach to tunneling used here, which introduces a nonzero chance that an element

8 CREWES Research Report — Volume 32 (2020)



Regularization tunneling FWI

FIG. 10. Estimated vP and ρ after inversion of comprehensive acquisition geometry data without
tunneling or regularization. Compare with figures 8 and 2.

will tunnel to another cluster at any iteration. If one element jumps at a different iteration
or to a different cluster than its neighbours, it may introduce the noisiness seen in these
results. In principle, an element that tunnels to the wrong cluster should be capable of self-
correction at later iterations, as the momentum term will continue to point at or near the
correct cluster. In this case, however, the elements are defined at the smallest possible scale,
while the momentum is calculated based a descent direction, and is fundamentally limited
in wavelength by the data considered. This means that an element in the wrong cluster may
not naturally self-correct, because the momentum calculated at the element is chiefly deter-
mined by the surrounding neighborhood as a whole. Prevention of the noisiness caused by
this effect could be achieved by either moving to a more deterministic tunneling approach,
or by defining model elements to be large enough to individually control the momentum in
their region.

CONCLUSIONS

Prior information has the capability to dramatically improve seismic inversion results
through regularization. Conventional FWI, using local optimization strategies, struggles
to cope even with very simple regularization terms if they have multiple local minima.
Information about different clusters of plausible rock physics relations is particularly prob-
lematic. In this report, we propose a regularization tunneling strategy, which introduces
a global component to FWI based on knowledge of the regularization term. On simple
synthetic tests, this tunneling approach allows for the inversion to make use of prior infor-
mation which would not be usable in a conventional approach.
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