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Abstract

A finite-difference algorithm was developed based on the Biot’s equations of motion to model

seismic wave propagation in poroelastic media. As opposed to the elastic case, in the poroe-

lastic approach the properties of the pore fluid are taken into account in the modeling process.

Poroelastic modelling could be useful in cases where the fluid content of the rock is of interest,

such as Carbon Capture and Storage (CCS) projects. The developed program was then used

to investigate the detectability of CO2 in a CCS project in Alberta. Two models were defined

for the baseline and monitor scenarios that respectively, represented the subsurface before and

after injection of CO2 and the corresponding synthetic seismic sections were generated. The

difference between the calculated seismic sections for the two scenarios shows that the resid-

ual amplitude is comparable with the baseline amplitude. With this result, the injected CO2 in

the Quest project over a year could be detected providing the data have good bandwidth and a

high signal-to-noise ratio. Furthermore, a comparison between the poroelastic algorithm and

the elastic algorithm shows that the time-lapse effect in the poroelastic case is smaller than the

one in the elastic case. In the fluid saturated media, some of the wave energy is dissipated due

to fluid viscosity, and the poroelastic approach helps us to take this loss into account in the

modeling process.
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Chapter 1

Introduction

1.1 Carbon Capture and storage

The greenhouse effect is a natural process that keeps our planet warm enough for us to live

on. Greenhouse Gases (GHG) allow the sun’s rays to enter the atmosphere to warm up the

planet, but keep the heat from escaping to space. The concerning issue is that the amount of

greenhouse gases is increasing in the atmosphere due to human activities, leading to global

warming. Among the greenhouse gases, carbon dioxide (CO2) produced from fossil fuels and

industrial processes is the largest contributer to anthropogenic GHG emissions (IPCC, 2015).

Carbon Capture and Storage (CCS) is considered by many to be one of the most effective

methods for reducing CO2 emissions in the atmosphere (Metz et al., 2005). In this process,

CO2 from large emitters is captured before it can be released into the atmosphere, transported

and then injected into a deep geological formation for permanent storage. Based on the new

regulations of the Government of Alberta (2015), the facilities that produce 100,000 tonnes of

CO2 annually, are required to reduce their emissions by 12%. This reduction target increases to

15% in 2016 and 20% in 2017. The producers that do not reach their target will have to pay the

carbon fine that is $20 per tonne in 2016 and this amount increases to $30 in 2017.

Alberta’s new climate change strategy draws attention to the importance of employing CCS

technology in order to reduce carbon emissions. Alberta has great potential and opportunities

for CCS. There are numerous depleted oil and gas reservoirs, deep saline aquifers and coal-beds

in Alberta’s basin that are ideal for CO2 sequestration (Michael et al., 2009; Bachu et al., 2000,

2002) .
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1.2 Seismic monitoring

CCS technology consists of three major steps: capture, transport, and storage. Prior to injection

into the storage formation, a comprehensive study is carried out to investigate the feasibility

of sequestration and containment in the storage formation. The focus of this dissertation is on

the storage step. The seismic method is used during different phases of the project from pre-

injection to facility closure for monitoring purposes. The goal is to ensure that the injected CO2

remains within the storage formation, since the leakage of the CO2 into the groundwater, soil,

or into the atmosphere poses health and environmental risks.

A laboratory study by Wang et al. (1998) on flooding CO2 in carbonate reservoir showed

that the P-wave velocity decreased 4–11 % in the saturated rock. In fact, injecting CO2 into

a fluid saturated rock will decrease its P-wave velocity due to the low incompressibility of

CO2. Consequently, the seismic response of the reservoir undergoes some changes that help in

tracking the path of the injected CO2. Time-lapse seismic methods have become popular in the

industry to follow the changes in the oil reservoirs after production or injection (Greaves and

Fulp, 1987; Watts et al., 1996; Wang, 1997; Lumley, 2001). In the time-lapse method, a set

of baseline data prior to production is acquired and used as a reference to observe the changes

exhibited by the reservoir after production. This is accomplished by tracking the changes in the

seismic amplitude, traveltime and other attributes between baseline and monitor data. The same

idea has been utilized in CO2 sequestration projects for imaging the CO2 plume in the storage

reservoir (Arts et al., 2004; Vera, 2012; Alshuhail, 2011; Carcione et al., 2006).

Numerical modeling is a key step in time-lapse studies, particularly in CO2 sequestration

projects. Numerical methods are employed to predict the possible response of the reservoir

after injection. In this process, two models are defined, one for baseline and one for monitor

scenarios, and the possible seismic responses of the two models are calculated numerically. The

monitor model, that represents the subsurface model after injection, is generated by adding a

CO2 plume to the baseline model. Numerical modeling can help save millions of dollars in CCS
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projects by assisting the survey designs and planning strategies.

The Sleipner project in Norway, which is the first industrial scale CO2 storage project in

the world, is an excellent example of utilizing seismic methods in CCS technology. The project

has been conducted by Statoil since 1996 at the Sleipner gas field in North Sea, Norway (Chad-

wick et al., 2005; Arts et al., 2004). The CO2 produced from the Sleipner natural gas field is

injected into the Utsira formation for greenhouse gas mitigation purposes. A smaller project,

named Saline Aquifer CO2 Storage (SACS) was specifically defined to monitor the injected

CO2. Figure 1.1 illustrates an overview of the storage process in Sleipner. A baseline seismic

survey was collected in 1996 prior to initial CO2 injection. The purpose was to monitor the

fate of CO2 as well as the shape of the plume after injection. Figure 1.2 shows the time-lapse

field data along with numerical modeling results for this site (Chadwick et al., 2005). In order

to generate the monitor data, a CO2 saturation model was defined and the synthetic data were

generated for this model. The synthetic seismic data match the real data quite well, indicating

that the modeled CO2 plume is likely similar to the real plume. The effect of the injected CO2

appears as a change in the reflection signature as well a time push-down effect for the reflections

within and below the CO2 plume. The push-down effect is caused by the decrease in the seis-

mic wave-velocity due to presence of CO2 in the formation. The baseline and monitor surveys

were acquired, respectively, in 1994 before injection, and in 1999 after injecting 2.35 million

tonnes of CO2. SACS ended in 2002, but the CO2STORE project has been continuing parts of

its activities since then.

1.2.1 Forward modeling: finite-difference method

Seismic forward modeling is the process of numerically generating seismic data based on a

known geological model. In practice, the subsurface model is unknown, and the acquired seis-

mic data are used to estimate the elastic properties of the subsurface through a process called

“inversion”. Forward modeling is an essential step in the inversion process, and thus has been

always of interest in geophysical applications. Carcione et al. (2002) offer a comprehensive
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Figure 1.1: An illustration of the Sleipner project in North Sea. The CO2 generated from
the natural gas is injected directly into the Utsira saline aquifer for permanent storage (Figure
courtesy of Statoil).

review of the different numerical modeling methods.

The finite-difference method is a popular approach among the numerical methods of seismic

modeling. The main reason is that in this method the entire waveform is modeled based on the

wave equations of motion. Therefore, it is the most accurate method for modeling seismic

waves. The basic concept of finite-difference method is to replace the partial derivatives in the

partial differential wave equations with their approximations based on Taylor series. The wave

equations can be then solved on a numerical grid to obtain the wave motions in the medium.

A general summary of the main steps of finite-difference modeling is presented here, and

the details will be presented in Chapter 5. These steps are:

1. Wave equation formulation: Wave equations can be either written in a displacement-

stress formulation, or a velocity-stress formulation. The advantage of the velocity-stress
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Figure 1.2: Synthetic seismic data along with the observed data from the Sleipner project. a)
Synthetic data prior to injection in 1994, b) Synthetic data after injection in 1999, c) Observed
data prior to injection in 1994, d) Observed data after injection in 1999. The amount of injected
CO2 was 2.3 million tonnes. Modified after Chadwick et al. (2005).
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formulation is that the equations are first-order in time, making it easier to solve. In fact,

the time derivatives of the displacements in the displacement-stress equations are replaced

by velocity to reduce the order in time in the equations. The velocity-stress formulation

is typically used with the staggered grid scheme of discretization. The wave equations

and also the finite-difference scheme used in this thesis will be explained in more detail

in Chapters 4 and 5.

2. Discretization: In order to numerically solve any partial differential equations using the

finite-difference method, it is necessary to discretize the equations first. This is done by

replacing the time and space derivatives with their approximations from Taylor series.

3. Source implementation: The seismic sources are of different types depending on their

generated force. For example, explosive source and shear vibrator, respectively impose

pressure and shear forces on the medium. In finite-difference modeling, the source is

implemented by adding the force to the stress and displacement (or velocity) fields. For

instance, in the case of a pressure source, the normal stress fields must be equal at the

source location and initial time. Therefore, τxx = τyy = τzz, where τxx,τyy,τzz are the

normal stresses in x,y and z directions. Accordingly, to add an explosive source, the force

function is added to the normal stress fields at the initial time of calculations.

4. Boundary conditions: Numerical models are finite in space as opposed to the real Earth.

Therefore, the wave reflects from the boundaries of the model, instead of traveling in-

finitely as it would in the Earth. In order to avoid these undesired reflections, a layer is

added to the grid in which the outgoing waves dissipate quickly.

For simplification and also cost-saving purposes, the Earth is usually assumed to be a single-

phase elastic solid. Therefore, only elastic solid properties are incorporated in the modeling pro-

cess, and the wave equations are formulated for an elastic medium. However, the reservoirs that

are of interest in most geophysical applications are porous rocks saturated with fluid mixtures.
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This type of medium, that is also referred to as ”poroelastic”, is the main focus of this thesis.

CCS projects are excellent examples of the need to consider poroelastic media. Therefore, in

order to better model seismic waves in CCS projects, the wave behavior in fluid saturated media

needs to be well understood.

1.3 Poroelastic media

Maurice Biot first proposed a theory of poroelasticity to describe wave propagation in fluid

saturated media (Biot, 1962). His theory holds that a poroelastic medium is composed of an

elastic solid frame and a viscous pore fluid mixture. It is known that, in such a medium, two

compressional waves are generated: a fast P-wave due to the motion of the solid rock frame,

and a slow P-wave due to the relative motion of the fluid with respect to the solid frame. In low

frequencies, such as typical seismic frequencies, the effect of fluid viscosity becomes stronger

than the internal effects, leading to diffusion of the slow mode (Carcione et al., 2010). There-

fore, the slow P-wave should not be observed at low frequencies. However, when the the ratio

of the fluid viscosity to the permeability (the factor b) tends to zero, the slow mode begins to

behave as a traveling wave. However, in both cases the fluid movement affects the wave energy,

which accordingly affects the seismic response of the medium. The wave behavior in poroelas-

tic media can be useful to monitor CCS projects since the storage rocks are porous and saturated

with fluids.

1.4 Motivation

Carbon Capture and Storage is the most effective technology for short-term mitigation of green-

house gases (Metz et al., 2005). An important step in successfully deploying this technology is

to ensure that it does not pose any health and environmental risks. Time-lapse seismic is one of

the key parts of the Measurement Monitoring and Verification (MMV) program , which aims

to assure that the storage formation securely retains CO2 without any leakage risks. MMV in-
7



volves initial numerical forward modeling to investigate the feasibility of the time-lapse seismic

surveys in detecting and tracking the injected CO2. Performing more realistic forward model-

ing is therefore valuable in the MMV program for better designing seismic surveys as well as

for planning purposes. This can be accomplished only by using more accurate modeling algo-

rithms, such as poroelastic modeling, in which the effect of injected fluid is taken into account

in the calculations.

1.5 Objectives

As discussed earlier in this chapter, the importance of seismic numerical modeling in the CCS

technology is well known. Any further improvement of the numerical methods could lead to a

significant difference in the management of CCS projects. Therefore, The main objectives of

this dissertation are summarized here, and are:

• To develop a forward modeling program using the finite-difference method to model wave

propagation in poroelastic media. In poroelastic modeling both fluid and solid phases are

considered in the modeling process, and therefore it is specifically useful for simulating

the seismic response of the fluid saturated media in CCS projects.

• To investigate the role of factor b (the ratio of viscosity to permeability) on the seismic

response of the saturated rock. The factor b is expected to cause energy loss, and therefore

needs to be investigated in more detail. This involves examining the wave behavior in the

presence or absence of the factor b in the seismic frequency range.

• To use the finite-difference program developed in this thesis to carry out time-lapse nu-

merical modeling for the Quest CCS project in Alberta. The Quest project is a suitable

example of a poroelastic medium. Hence, the effect of the pore fluid in this project can be

investigated by comparing the synthetic traces calculated from our poroelastic program

with the ones generated by an elastic algorithm, in which the medium is assumed to be a
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single solid phase without fluid effect.

• A final objective is to perform a time-lapse feasibility analysis for the Quest project. This

involves the examination of the changes in the seismic signature of the storage rock after

injection. This is accomplished by a Gassmann fluid substitution approach and poroelastic

finite-difference modeling, and comparing the seismic reflection amplitudes and times

before and after CO2 injection.

1.6 contributions

The main contribution of this dissertation is to investigate the effect of the fluid viscosity on

wave propagation in fluid saturated media. This is accomplished by developing a 2-D velocity-

stress staggered-grid finite-difference algorithm to simulate the wave propagation in such media.

To my knowledge, the effect of fluid viscosity in poroelastic media has yet to be deeply explored

in the literature. Using the developed program, I demonstrate that there is a measurable loss of

wave energy in the poroelastic media due to diffusion of the slow P-wave that is not observed in

the elastic media. Results show that by increasing the fluid viscosity, the slow P-wave is more

quickly absorbed in the medium.

Furthermore, a poroelastic model is constructed for a Carbon Capture and Storage (CCS)

project in Alberta, and a model-based time-lapse simulations is carried out using the developed

program. This includes a framework for defining model parameters to perform a poroelastic

time-lapse modeling. By comparing the modeling results with those generated from an elastic

program in which the fluid phase is ignored, the amount of loss caused by the fluid phase is

revealed. The accuracy of the modeling algorithm may aid in enhancing seismic imaging and

monitoring the injected CO2 volume.
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1.7 Thesis structure

This dissertation is composed of 7 chapters. The first chapter is a brief introduction to the

Carbon Capture and Storage technology (CCS), seismic monitoring and discusses motivation

and objectives.

In Chapter 2 the Quest CCS project is introduced. Then the geological setting of the area

including the storage formation Basal Cambrian Sands (BCS), the major seals and baffles are

presented.

The well data from the Quest project are presented in Chapter 3. These data are used to

extract physical properties of the storage formation, BCS, and also to define some numerical

models that will be used as examples in the later chapters to verify the finite-difference program.

Fluid substitution modeling based on Gassmann’s method is also carried out in this chapter to

predict the changes in the properties of the BCS storage formation, after injecting a certain

amount of CO2. These properties are also used later to define baseline and monitor models for

time-lapse modeling.

Biot’s theory of poroelasticity and the equations of motion in the fluid saturated media are

introduced in Chapter 4. Then the partial differential equations for the 2D case, in which the

wave travels only in the x-z plane, are presented. Finally, the Perfectly Matched Layer method

(PML) is used to derive the partial differential equations for the grid boundary. These equations

will be used in a thin layer around the grid in order to absorb the outgoing waves and avoid the

numerical reflection from the grid boundaries.

Chapter 5 explains the steps in the finite-difference modeling procedure. A staggered grid

method is used to obtain the discrete velocity-stress partial differential equations for both inter-

nal and PML regions. Some example snapshots are presented in this chapter in order to verify

the finite-difference program. Then the effect of the factor b on the generated snapshots as well

as synthetic traces are analyzed. At the end of the chapter, the PML boundary condition, and

also the stability of the program are examined.
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Time-lapse numerical modeling is carried out for the Quest project in Chapter 6. The models

for the baseline and the monitor scenarios are defined based on the properties extracted from the

well logs as well as the results from the Gassmann’s fluid substitution. A CO2 plume is added

to the baseline model to define the monitor model. The objective is to qualitatively assess the

effect of the CO2 on the seismic signature of the BCS, such as reflection amplitude and time.

Eventually, the conclusions and recommendations for future work are presented in Chapter 7.
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Chapter 2

Quest Carbon Capture and Storage (CCS) Project

2.1 Introduction

Carbon Capture and Storage (CCS) technology plays an important role in Alberta’s strategies

to mitigate greenhouse gas emissions. Several studies on the feasibility of CCS in Canada

have been carried out based on hydrological and geothermal regimes, hydrocarbon potential,

tectonics, and the basin structure (Bachu et al., 2000). Bachu et al. (2002) investigated possi-

ble suitable geological formations for carbon storage projects throughout Canada. The study

showed that the most suitable formations are within the Western Canadian Sedimentary Basin

(WCSB) where deep saline aquifers are overlain by several extensive impermeable formations.

Moreover, Alberta’s portion of the basin is divided into six regions based on the geological at-

tributes and the potential for carbon storage (Figure 2.1). These regions ranged from unsuitable

at the eastern region to extremely suitable in southeastern and central part of Alberta. Central

Alberta is considered to be extremely suitable for sequestration for several reasons:

• This region is located in the center of WCSB where the thicknesses of the formations are

suitable for sequestration.

• The aquifers are sealed by multiple impermeable layers such as salt and shale, lowering

the risk of CO2 upward migration.

• Numerous coal beds as well as oil reservoirs close to the depletion stage are available for

sequestration.

• This region is tectonically inactive, and there are no active faults to threaten the contain-

ment of the injected CO2.
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Figure 2.1: Alberta is divided into six regions based on the suitability of the basin for carbon
sequestration (Bachu et al., 2000).

This reveals the potential of Alberta for successful sequestration of CO2. In fact, since Central

Alberta is a heavy industrial region, the CO2 could be transported to the injection sites with

minimal transportation costs.

2.2 Quest CCS project

Quest is a large-scale CCS project conducted by Shell and its partners in the central part of

the Alberta basin. The purpose of this project is to reduce CO2 emissions from the Scotford

Upgrader by storing it in a deep geological formation. The location of the Scotford Upgrader is

about 5 km northeast of Fort Saskatchewan, within Alberta’s heavy industrial zone (Figure 2.2).
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Figure 2.2: Area of study for the Quest project, as well as the location of well
SCL-8-19-59-20W4 (Radway well). Figure is generated using Google maps.

Storage sites are preferred to be close to industrial regions where high levels of CO2 are pro-

duced. The life of the Quest project is expected to be minimum of 25 years, which is equal to

the life of the Scotford Upgrader. The captured CO2 will be transfered to the injection site by

an approximately 80 km long pipeline and will be injected into the ground through 3 injection

wells in the area. The rate of injection will be 1 million tonnes a year, which is 80 percent of

the CO2 produced by the Scotford Upgrader. Therefore, the estimated amount of injected CO2

during the life of the project will be about 27 million tonnes. Shell’s feasibility analysis was car-

ried out using the existing 3D surface seismic data as well as well logs (Shell Canada Limited,

2010). Gravity and magnetic data sets have also been acquired along with the seismic data. The
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injection site was chosen so that it is far away from the existing deep wells in the area (Alberta

Department of Energy, 2015). This is to ensure that there will not be possible groundwater

contamination due to the brine moving up from the legacy wells. These wells penetrate at least

one of the geological seals; and thus injecting CO2 in the vicinity of these wells would increase

the risk of brine penetrating shallower aquifers and contaminating the groundwater (Figure 2.4).

The selected geological formation for the CO2 storage in Quest project is the Basal Cambrian

Sands(BCS), which is a saline aquifer within WCSB, at an approximate depth of 2 km below

surface. It is expected that the BCS has the capacity to contain the CO2 emissions from the

Scotford Upgrader for decades.

2.3 Geological setting

The storage complex for the quest project is composed of the Basal Cambrian Sands, three

major seals, and shallow strata of WCSB. Figure 2.3 shows the regional stratigraphic section

for the zone of interest along with a more detailed view of the Quest storage complex. The

BSC lies directly on top of the crystalline Precambrian basement rocks. Negligible porosity

and permeability of the Precambrian granites make a confining zone directly beneath the basal

sands.

Containment of the storage complex is one of the principal requirements of CO2 sequestra-

tion. This is to ensure that the injected CO2 is permanently confined within the storage unit.

More details on the storage complex BCS and the geological seals are presented below.

2.3.1 Basal Cambrian Sands

The injection zone for the quest project is the Basal Cambrian Sands (BCS) formation, which

is composed of fine to coarse-grained sandstone with some shale inclusions. BCS lies uncon-

formably on the erosional upper surface of Precambrian basement. This unconformity is present

between the Precambrian and Cambrian sequence throughout the WSCS, and represents 1.5 bil-
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Figure 2.3: Stratigraphic column of the Western Canadian Sedimentary Basin and the hydro-
logical information. On the right a larger view of the Quest storage complex is illustrated. The
target in the Quest CCS project is the Basal Cambrian Sands (Shell Canada Limited, 2010).
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Figure 2.4: The map of BCS thickness at the area of interest along with the existing wells.
The wells that penetrate the Precambrian basement are denoted with filled black circles. This
includes the Radway well (8-19-59-20) (Shell Canada Limited, 2010).

lion years worth of missing deposition and subsequent erosion (Slind et al., 1994). The BCS is

present almost throughout most of Alberta and Saskatchewan except at some local Precambrian

highs that have prevented deposition (Figure 2.5 ).

In terms of reservoir quality, the BCS provides ideal conditions for CO2 sequestration. The

core data suggest a porosity of 8–24% and a permeability of 1 mD to > 1 D. The geological

confinement of the BCS is another criteria that make it favorable for storage. BCS is overlain by

three major seals and multiple aquitard systems that effectively isolate the injected CO2 (Alberta
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Figure 2.5: East-west view of the Cambrian and lower Ordovician in the plains of Alberta and
Saskatchewan. The Basal sands spread throughout most of Alberta and Saskatchewan. The
sand unit is locally absent in some highs of Precambrian (Slind et al., 1994).
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Department of Energy, 2015). These major seals are: Middle Cambrian Shales (MCS), Lower

Lotsberg Salt, and Upper Lotsberg Salt (Figure 2.3).

2.3.2 Middle Cambrian Shales

Middle Cambrian Shales (MCS) from the Deadwood Formation is the first and the main seal

above the BCS. This unit, along with the Lower Marine Sands (LMS) from the Earlie Formation

and Upper Marine Silts from the Deadwood Formation form a aquitard overburden for BCS.

The distribution of the MCS in Alberta and Saskatchewan is shown in Figure 2.6. The average

thickness of this layer is approximately 60 m.

2.3.3 Lower Lotsberg Salt

The lower Lotsberg Salt extends through central and eastern Alberta, and continues across the

border into Saskatchewan (Figure 2.7). The Top of the Lower Lotsberg Salt is at a depth between

1050 to 2100 m, and the maximum thickness of this unit is 60 m. This is a halite aquitard within

the Devonian Elk Point Group, which makes an excellent upper seal for the BCS aquifer.

2.3.4 Upper Lotsberg Salt

The Upper Lotsberg Salt is another halite formation in the Devonian Elk Point Group that also

extends through central Alberta and Saskatchewan but over a larger area (Figure 2.7). The

maximum thickness is around 150 m and the depth to top of the formation starts from 750 m in

the east and increases to 2100 m in the west. The Lower and Upper Lotsberg Salts are separated

by the Devonian mudstones (Shell Canada Limited, 2010; Grobe, 2000).

2.3.5 Overburden strata

Within the overburden strata, there are some layers deposited between the major seals that act

as barriers for the Quest storage complex (Shell Canada Limited, 2010). These layers are:
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Figure 2.6: The distribution of the Middle Cambrian Shale over the Western Canadian Sed-
imentary Basin (WCSB) along with the approximate location of the Quest project (modified
after Slind et al. (1994))

20



Figure 2.7: The distribution of the Upper and Lower Lotsberg Salts over the Western Canadian
Sedimentary Basin (WCSB), and the approximate location of the Quest project (modified after
Grobe (2000))
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• Lower Marine Sands( LMS) from the Earlie Formation: The BCS is directly overlaid by

LMS. The effective porosity of the LMS is estimated to be 6% with the average perme-

ability being 4 mD. However, the insignificant vertical permeability of the LMS prevents

the CO2 from migrating upwards.

• Upper Marine Silts (UMS) from the Upper Deadwood Formation: Directly overlying

the Cambrian MCS is the Upper Cambrian UMS, with the maximum thickness of 60

m. The Cambrian UMS is predominantly shale with an effective porosity of 1–2 % and

permeability values less than 1 mD. The poor permeability and porosity of the UMS make

it an effective barrier for the CO2.

• Devonian Basal Red Beds: The fine grained Basal Red Beds lie directly above the Cam-

brian UMS. This layer, with a typical porosity of 5 % and permeability values between

0.001–1 mD creates another baffle for the storage complex in the Quest project.

Besides the impermeable layers mentioned above, there are multiple aquitard and aquifer

systems in the shallower overburden strata. Some hydrologic characteristics of the overburden

strata could be summarized as follows:

• Winnipegosis Formation within the Elk Point Group is the first major porous layer above

the BCS. However, the Prairie Evaporites that consists of dolomite, salt and shale, lie

directly above this formation. Therefore, Prairie Evaporites form an aquitard overlying

the Winnipegosis Formation, acting as a barrier for the migration of CO2.

• The middle Devonian Beaverhill Lake Group, are considered an aquifer system lying

above the Prairie Evaporite Formation. The Ireton Formation separates the middle Devo-

nian aquifer system from the upper Devonian aquifer. Ireton is a thick aquitard composed

of shale and marlstone within the Leduc Group.

• There is a major absence in deposition from the Upper Devonian to Lower Cretaceous.
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Above this unconformity, the Mannville aquifer system is overlaid by the Colorado aquitard

system.

• Above the Colorado aquitard, there is a sequence of aquitards and aquifers from the upper

Cretaceous to Tertiary, referred to as “post-Colorado aquifer-aquitard system” (Bachu

et al., 2000).

2.4 Summary

The Western Canadian Sedimentary Basin (WCSB) has excellent potential for carbon sequestra-

tion. This region, which is tectonically inactive, contains deep saline aquifers and oil reservoirs

near depletion stage, as well as coal-beds, that are all suitable for CO2 storage. The Quest

project, which is being conducted in Alberta by Shell Canada Limited and its partners, is a

perfect example of unlocking this potential. The project is located within a heavy industrial

zone in central Alberta, and the geological setting of the storage complex suggests an excellent

containment of CO2. The injection zone, Basal Cambrian Sands (BCS), is overlain by multiple

impermeable layers, reducing the chance of CO2 upward migration. Furthermore, high porosity

and permeability of the BCS, offers an ideal reservoir quality for injection of CO2.
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Chapter 3

Data and Gassmann Fluid Substitution

3.1 Introduction

Fluid substitution modeling is an essential step in most reservoir time-lapse modeling studies.

In this process, the initial pore fluid of the reservoir rock is substituted by a new fluid to calculate

the new properties of the saturated rock. These properties can then be used in the time-lapse

modeling algorithms to generate synthetic data useful in reservoir monitoring studies. In CCS

projects, the in situ fluids that are usually either brine or oil, are partially replaced by CO2. Since

CO2 has lower incompressibility than the reservoir fluids, the bulk modulus of the saturated

rock will decrease to some extent after the initial reservoir fluids are replaced by CO2. These

changes in elastic properties can be detected in seismic data and used to track CO2 in the target

formation. In this chapter the available data from the quest project are presented, and the in-

situ properties of the storage formation, BCS, are extracted from the data. This is followed

by a review of the Gassmann (1951) method and the fluid substitution modeling for the Quest

project using his method. The calculated properties in this chapter are then used for numerical

modeling in the later chapters.

3.2 Well logs

The numerical models used in this thesis are all based on the data from well SCL–8–19–59–

20W4 which is also called ”Radway well”. These well data were received from Shell Canada

Limited in summer 2012. The location of this well is within the Thorhild County area where the

candidate injection wells are also located (Figures 2.4 and 2.2). A baseline 3D seismic survey

has been acquired in the area as well. However, in the work described here there was access
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only to the well data, and the numerical models used in this dissertation are based solely on the

logs from this well. The available logs are shown in Figure 3.1. There are 5 tracks that show

density, gamma-ray, P-wave velocity, S-wave velocity and VP/VS ratio. Some of the formation

tops are marked in this figure as well. The Upper and Lower Lotsberg Salts show a significant

decrease in density due to the low density of the salt. The base of the BCS, which is the top of

the Precambrian Basement, is distinguished by the sudden increase in the P-wave velocity and

density at the bottom of the well. Since the Precambrian Basement mainly consists of granite,

the density and the seismic velocity at this depth is high. The top of the BCS could not be easily

recognized from the density and velocity logs due to low contrast with the overlying layer that is

the LMS. However, in the gamma ray log, the BCS shows notably low values that is indication

of higher sand content compared to upper layers. The thickness identified of the BCS in this

log is around 50 m. The average rock properties of the BCS was then extracted from these logs.

These properties are listed in Table 3.1.

Table 3.1: Average physical properties of the BCS extracted from the well logs

Property BCS Standard Deviation

ρ 2390 (kg/m3) 41 (kg/m3)

Vp 4100 (m/s) 103 (m/s)

Vs 2350 (m/s) 121(m/s)

3.3 Gassmann Fluid Substitution

Fluid substitution modeling is a process in which the fluid content of a saturated rock is the-

oretically substituted by a new fluid mixture and the physical properties of the new saturated

rock are calculated. The Gassmann (1951) method is commonly employed for fluid substitu-

tion modeling. In this method the bulk modulus of a saturated rock is calculated based on the

properties of the pore fluid and the dry rock frame. In this chapter this method is used to cal-

culate the properties of the Basal Cambrian Sands (BCS) in the Quest project after injecting
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Figure 3.1: Data from well SCL- 8-19-59-20W4 and some of the horizons in the zone of inter-
est. Respectively from bottom to top the tracks show the density, gamma-ray, P-wave velocity,
S-wave velocity, and VP/VS ratio.
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CO2. The calculated properties are needed for the time-lapse wave equation modeling later in

this dissertation.

The Gassmann formulation was established under several assumptions, and it is therefore

valid only for homogeneous isotropic materials with connected pore space. Therefore in the

case that the rock is anisotropic, or consists of several minerals with highly contrasting elastic

properties, the Gassmann model is no longer valid (Smith et al., 2003). The BCS is mostly com-

posed of sandstone and could be assumed homogeneous and isotropic. Therefore, Gassmann

fluid substitution could be carried out for BCS, with efficiency.

3.3.1 Theory

Gassmann (1951) defined the bulk modulus of the fluid saturated rock as a function of porosity

and the bulk moduli of the rock matrix (KM), the fluid (K f ) and the dry rock frame (KDry):

Ksat = KDry +

(
1− KDry

KM

)2(
φ

K f
+ (1−φ)

KM
− KDry

KM
2

) . (3.1)

This formula has been used extensively for fluid substitution modeling in the recent decades. All

parameters on the right hand side of the equation are usually known, except the bulk modulus

of the dry rock frame. This parameter, which is the bulk modulus of the drained rock, could be

estimated using one of the folowing methods (Smith et al., 2003): 1) By measuring the velocity

in the rock physics lab when the rock is drained under controlled conditions. A very small

amount of moisture must exist in the rock when the velocity is being measured to avoid errors.

2) Using empirical relationships or effective medium theory (Spencer et al., 1994; Wang et al.,

2001). 3) Calculating directly from log data using Equation 3.1 and solving for KDry. Since

KDry remains unchanged regardless of the fluid content of the rock, this parameter could be

calculated using the bulk modulus of the initially saturated rock Ksat0 and the bulk modulus of

the initial fluid K f0 . The later method was used in this work to estimate the bulk modulus of the
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dry frame from the log data. Therefore, solving Equation 3.1 for KDry gives:

KDry =
Ksat0

(
φKM
K f0

+1−φ

)
−KM

φKM
K f0

+
Ksat0
KM
−1−φ

, (3.2)

Once KDry is evaluated, Ksat can be calculated for the rock saturated with any new fluids from

Equation 3.1.

3.3.2 Work flow

To perform fluid substitution modeling for the Basal Cambrian Sands (BCS) based on Equa-

tions 3.1 and 3.2, the physical properties of the Fluid, the matrix, and the saturated rock are

required. These properties are:

ρ f0: density of the initial fluid;

ρM: density of the Rock Matrix;

ρsat0: density of the initially saturated rock;

K f0: bulk modulus of the initial fluid;

KM: bulk modulus of the matrix;

Ksat0: bulk modulus of the initially saturated rock;

φ : Porosity of the rock;

and the following properties can be calculated during the fluid substitution:

ρ f : density of the new fluid mixture;

ρsat : density of the new saturated rock;

K f : bulk modulus of the new fluid mixture;

KDry: bulk modulus of the dry rock frame;

Ksat : bulk modulus of the new saturated rock.

The purpose of the fluid substitution modeling was to theoretically replace some of the

brine with CO2 and calculate the new physical properties of the BCS from after substitution.

Therefore, two scenarios are considered: one is the baseline scenario in which the fluid content
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of the BCS is 100 % brine, and the second one is the monitor scenario where the BCS is

saturated with a mixture of brine and CO2. Here the procedure of evaluating the required

parameters is presented followed by the fluid substitution results for BCS.

3.3.2.1 Properties of the initially saturated rock

For the Quest project, some properties of the initially saturated rock were extracted from the

well logs. These parameters are the density (ρsat0), the P-wave velocity (VP0), and the S-wave

velocity (VS0), which are also listed in Table 3.1. From the definition of the seismic velocities

we have:

µ = ρsat0V
2
S0
, (3.3)

Ksat0 = ρsat0V
2
P0
−4µ/3, (3.4)

where µ is the shear modulus of the rock. This parameter is assumed to be independent of

the fluid content and remains constant during the fluid substitution. Therefore, the calculated

µ from Equation 3.3 could be used throughout the fluid substitution procedure regardless of

the changes in the pore fluid. The calculated values from Equations 3.3 and 3.4 for BCS were

µ = 13.20 GPa, and Ksat0 = 22.00 GPa.

3.3.2.2 Fluid properties

The fluid properties had to be calculated empirically due to the lack of information about the

fluid properties of the BCS. To evaluate the bulk modulus and the density of the brine and

CO2, Batzle and Wang equations of state (Batzle and Wang, 1992) were used. For this purpose

the CREWES online fluid property calculator was employed, which is based on Batzle-Wang

method. The goal was to calculate the properties of CO2 and brine at the conditions of the

BCS aquifer. The temperature and pore pressure at BCS were needed as inputs of the software.

Since this information were not available, the geothermal and hydrostatic gradients were used,

respectively, to calculate the temperature and the pressure at the BCS. The temperature T at the
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depth of z, is given by:

T (z) = G∗ z+T (z0) (3.5)

where T (z0) is the temperature at the surface, that was assumed to be 15◦C. Moreover, G is the

geothermal gradient that in Alberta is about 27◦C/km Hitchon (1984). The temperature at BCS

was found to be 70◦ C.

Moreover, the pressure P at the depth of z is:

P(z) = H ∗ z, (3.6)

where H is the hydrostatic pressure gradient that is 9.792 KPa/m. The average depth of 2050 m

was considered for BCS, and the pressure obtained for this depth was 20 MPa (200 bar). In the

normal temperature and pressure, CO2 exists in the gaseous phase. Figure 3.2 shows the phase

diagram of CO2 as a function of temperature and pressure. The physical state of CO2 changes

by temperature and pressure. For example, at low temperatures CO2 is solid anywhere above the

sublimation line and it turns directly from solid to gas along this line witthout becoming liquid.

Furtheremore, above the critical point ( T=31.1 ◦ C, P=73.9 bar) CO2 enters the supercritical

zone. Under supercritical conditions, CO2 has a density close to that of the fluid state but it

expands to fill its container like a gas.

Based on the phase diagram, in the temperature and pressure of the BCS (T=70◦ C, P=200

bar), CO2 will be in supercritical phase. By inserting these values into the CREWES fluid

property calculator, the bulk modulus and density of CO2 and brine at these conditions were

evaluated. These properties are summarized in Table 3.2.

Table 3.2: Estimated properties of Brine and CO2 at the BCS conditions

Fluid Bulk Modulus Density P-Wave Velocity
CO2 0.08×109 Pa 625 kg/m3 360 m/s
Brine 3.8×109 Pa 1230 kg/m3 1770 m/s
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The next step was to calculate the properties of the mixture of brine and CO2. Since

Gassmann assumes the pore fluid is homogeneous, the bulk modulus and the density of the

fluid mixture must be calculated from those of the individual fluids in the mixture. The bulk

modulus of the fluid mixture could be calculated using the Reuss average approach (Smith et

al., 2003):

K f =

[
n

∑
i=1

Si

Ki

]−1

(3.7)

where Si and Ki are respectively the saturation and the bulk modulus of each fluid phase in the

mixture, with n being the number of the fluid phases. Therefore, this formula could be used

for any mixture of multiple fluids. BCS is assumed to have only two phases after injection: the

brine, and the CO2. Then we have:

K f =

[
SCO2

KCO2

+
(1−SCO2)

Kbrine

]−1

, (3.8)

where SCO2 is the saturation of CO2, and consequently, (1- SCO2) is the saturation of brine.

Kbrine and KCO2 are, respectively, the bulk moduli of brine and CO2. To understand how the

bulk modulus of the fluid mixture, K f , changes by CO2 saturation, this modulus was calculated

for different values of SCO2 ranging from zero to 1. The calculated K f is shown in Figure 3.3

a. There is a sudden decrease in the bulk modulus of the mixture below SCO2 = 0.2, and only

subtle changes at greater CO2 saturations. The density of the fluid mixture are simply calculated

from a volumetric mix of the fluids:

ρ f =
n

∑
i=1

Siρi (3.9)

where ρi is the density of each fluid phase in the mixture, and Si is their saturation. For BCS

we have:

ρ f = SCO2 ρCO2 +(1−SCO2) ρbrine (3.10)

Figure 3.3 b shows the fluid density of the mixture for different values of CO2 saturations. The

density linearly decreases from the density of the brine, with SCO2 = 0 to the density of CO2,

with SCO2 = 1.
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Figure 3.2: Carbon dioxide temprature-pressure diagram. The CO2 is in a supercritical state for
when the temprature and the pressure are beyond the critical point. Copyright 1999 Chemica-
Logic Corporation.
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3.3.2.3 Rock matrix properties

The Reuss average could be used to calculate the bulk modulus of a rock matrix composed of

multiple minerals:

KM =

[
n

∑
i=1

Fi

Ki

]−1

(3.11)

where Fi is the volumetric fraction of each mineral and Ki is their bulk moduli. However, in this

study BCS was assumed to be composed of quartz only, with the bulk modulus of KM = 38 GPa.

3.3.2.4 Porosity

The porosity is calculated from the relationship between the density of the rock matrix ρM, the

density of the initial fluid ρ f0 , and the density of the initially saturated rock ρsat0:

ρsat0 = ρ f0φ +ρM(1−φ) (3.12)

The estimated porosity using these values from the BCS was approximately 18 %.

3.3.3 Results and Discussion

Now that the required parameters for Gassmann modeling are evaluated, the bulk modulus and

the density of the saturated rock could be calculated for different values of CO2 saturation

from Gassmann’s equation. The results are shown in Figure 3.3 c-d. The density of the fluid

decreases linearly with increasing CO2 saturation and as a result, the density of the saturated

rock follows the same trend. The bulk modulus of the saturated rock however has a trend similar

to that of the the fluid bulk modulus. Using Equations 3.3 and 3.4 the shear and compressional

seismic velocities, VS and VP are then calculated. Figure 3.4 shows the percent change in both

velocities versus CO2 saturation.

The P-wave velocity, VP, decreases sharply once CO2 is added to the fluid content, and starts

to slowly increase when the CO2 saturation passes 30–40 %. The P-wave velocity depends on

the bulk modulus and the inverse of the density. It is observed that the effect of density begins

33



CO
2
 Saturation

0 0.2 0.4 0.6 0.8 1

K
f (

G
P

a)

×109

0

1

2

3

4

CO
2
 Saturation

0 0.2 0.4 0.6 0.8 1

ρ
f (

kg
/m

3
)

600

800

1000

1200

1400

CO
2
 Saturation

0 0.2 0.4 0.6 0.8 1

K
sa

t (
G

P
a)

×1010

1.7

1.8

1.9

2

2.1

2.2

2.3

CO
2
 Saturation

0 0.2 0.4 0.6 0.8 1

ρ
 (

kg
/m

3
)

2250

2300

2350

2400

Figure 3.3: The physical properties of the fluid and the saturated rock at BCS after fluid substi-
tution as a function of CO2 saturation. a) The bulk modulus of the fluid mixture, b) the density
of the fluid mixture, c) the bulk modulus of the rock saturated with new fluid mixture, d) the
density of the new saturated rock

to dominate the bulk modulus beyond SCO2=30 %. Therefore, the velocity starts to increase to

some extent after this point. The S-wave velocity, VS, only depends on the inverse of the density

and thus increases linearly with CO2 saturation. The maximum decrease in the VP is 6%, and

the maximum increase in the VS is 1.5%.

As previously mentioned, two scenarios are considered for time-lapse modeling. The pore fluid

is assumed to be 100 % brine for the baseline scenario, and a mixture with 40 % CO2 and 60 %

brine. The CO2 saturation 40% was chosen because it is a typical value for saturation in CCS

projects. The properties of BCS for the baseline and monitor scenarios are listed in Table 3.3,

respectively represented by BCSBase and BCSMon. Later in this dissertation, these properties

are used to define numerical models for wave propagation modeling.
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Table 3.3: Physical properties of BCS for baseline and monitor scenarios

Property BCSBase BCSMon
ρM 2650 kg/m3 2650 kg/m3

ρ f 1230 kg/m3 1050 kg/m3

ρsat 2390 kg/m3 2350 kg/m3

KM 38.00 ×109 Pa 38.00×109 Pa
K f 3.8×109 Pa 0.25×109 Pa
Ksat 22×109 Pa 17.2×109 Pa
VP 4100 m/s 3850 m/s
VS 2350 m/s 2365 m/s
φ 18% 18%
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3.4 Summary

Gassmann fluid substitution modeling was carried out to evaluate the rock and fluid properties

of the Basal Cambrian Sands after injecting CO2. The compressional velocity decreased sharply

for CO2 saturation values below 30% and increased insignificantly past this point. Additionally,

the shear wave velocity increased slightly with increasing CO2 saturation with a linear trend.

The properties of the fluid and the saturated rock are essential for the poroelastic wave equa-

tion modeling which is the main focus of this thesis. These properties were calculated for the

baseline and monitor scenarios and will be used in our numerical models in the next chapters.
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Chapter 4

Biot’s Theory

4.1 Introduction

Time-lapse seismic techniques are used extensively in the oil and gas industry for monitoring

and planning purposes. To ensure that the seismic methods are capable of detecting the changes

in physical properties of the reservoir, numerical modeling is usually carried out. Most of the

modeling algorithms are based on the assumption that the Earth is composed of solid elastic

layers. However, in reality reservoirs are porous rocks that are saturated with fluids. Wave

propagation in porous media has attracted attention in the last fifty years, since Maurice Biot

established his theory on poroelasticity (Biot, 1962). Based on his definition, a poroelastic

medium is composed of two phases. One phase is the porous elastic solid frame, and the other is

the compressible viscous pore fluid that can move within the pore space. The relative movement

of the fluid with respect to the solid generates a ”slow P-wave” that travels with a velocity close

to the wave velocity in the fluid. The wave-induced fluid flow leads to energy dissipation in the

medium that is often neglected in elastic modeling algorithms. Biot’s theory could be therefore,

also used in modeling algorithms for cases in which fluid properties of the reservoir change

through time. A good example for such projects is Carbon Capture and Storage (CCS) projects,

where CO2 is injected into deep geological formations for permanent storage.

Some studies show that the presence of the slow P-wave in the fluid saturated media may

change the seismic wave-field noticeably (Gurevich et al., 1997; Shapiro and Müller, 1999). At

seismic frequencies the viscosity effects dominate the internal effects (Carcione and Quiroga-

Goode, 1995; Jianfeng, 1999), therefore the slow P-wave becomes diffusive and dissipates

quickly in the medium. However, in the case of zero fluid viscosity, the slow P-wave become a

traveling wave at all ranges of frequency (Carcione et al., 2010).
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There have been extensive numerical studies, including the finite-difference method, to sim-

ulate the wave motion in a poroelastic media since the fluid content of the rock is always of in-

terest in reservoir characterization and monitoring (Carcione et al., 2010). For example, Zhu and

McMechan (1991) used a standard finite-difference algorithm based on particle displacements,

and Dai et al. (1995) employed a MacCormack finite-difference scheme. Others implemented

staggered-grid velocity-stress scheme for solving the wave equations (Zeng et al., 2001; Wang

et al., 2003; Aldridge et al., 2004; Sheen et al., 2006). Furthermore, Jianfeng (1999) developed

a quadrangle-grid velocity-stress finite-difference which was based on a non-orthogonal grid.

Zhang’s scheme aimed to better handle the curved interfaces and surface topography.

Having an effective boundary condition is essential in any finite-difference wave model-

ing algorithm to avoid artificial reflections from the computational boundaries. The perfectly

matched layer (PML) was introduced by Berenger (1994) for electromagnetic waves and later

used by Chew and Liu (1996) for elastic and Zeng et al. (2001) for poroelastic media. This layer

is defined so that the reflection coefficient at the computational boundary is zero at all angles

and the outgoing waves are absorbed as much as possible. In this thesis the PML boundary

condition is implemented on a staggered grid velocity-stress finite-difference algorithm to solve

the wave equation in poroelastic media. This finite-difference scheme is similar to the one used

by Zeng et al. (2001) and Sheen et al. (2006). However, the numerical examples used in this dis-

sertation are for a CO2 storage project, and the algorithm is examined for possible monitoring

purposes in these types of projects. Therefore, a model-based poroelastic time-lapse study was

carried out in this thesis, and the results were compared with the results from a more simplistic

elastic algorithm.

4.1.1 Stress-strain relations

Maurice Biot was the first to propose a theory of poroelasticity (Biot, 1962). He made the

following assumptions to derive the equations of motion in the porous media: (1) the rock

frame is assumed to be elastic and isotropic; (2) the pores are connected so that the fluid can
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travel through the pore spaces; (3) the seismic wavelength is much larger than the average pore

size; and (4) the deformations are small enough that the mechanical processes become linear

(Dai et al., 1995).

Consider a rock cube with a unit size from within a porous rock saturated with fluid. This

cube could be considered statically isotropic, if for all cross sections of the rock, the ratio of

the pore area to the solid area is constant. It is also assumed that the pore size is much smaller

than the cube size and much smaller than the seismic wavelength. Any force that is applied to a

face of this cube, would be divided into two parts: one is the average stress applied on the solid

rock frame; and the other is a hydrostatic pressure applied on the fluid content of the rock. The

applied stress is therefore divided into two parts. One is the force acting on the solid frame of

the rock that is denoted by the following tensor:


τxx τxy τxz

τyx τyy τyz

τzx τzy τzz

 , (4.1)

The other part of the total stress is the force acting on the fluid content of the rock, that is (Biot,

1956): 
S 0 0

0 S 0

0 0 S

 , (4.2)

where S is a function of the fluid pressure P and porosity φ :

S =−φP, (4.3)

The strain generated in the solid is represented by the following tensor:


exx exx exy

eyx eyy eyz

ezx ezy ezz

 , (4.4)
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with

ei j =
1
2
(vi, j + v j,i), (4.5)

where ~v = [vx,vy,vz] is the particle displacement vector of the solid, and the fluid particle dis-

placement vector is~u = [ux,uy,uz], where i, j = x,y,z. The comma notation is a convenient way

of showing spatial differentiation. For example:

A, j =
dA
dx j

(4.6)

Therefore, the amount of the fluid that moves in and out of the unit cube is:

ζ =−div(~u−~v), (4.7)

where ~u−~v is the relative particle displacement of the fluid with respect to the solid and is

denoted by ~w. Accordingly:

ζ =−wk,k =−[
∂wx

∂x
+

∂wy

∂y
+

∂wz

∂ z
], (4.8)

Biot (1962) showed that for an isotropic poroelastic medium the linear relationship between

the stress and strain is:

τxx = 2µexx +λe−αMζ ,

τyy = 2µeyy +λe−αMζ ,

τzz = 2µezz +λe−αMζ ,

τxz = 2µexz, (4.9)

τxy = 2µexy,

τyz = 2µeyz,

P =−αMe+Mζ ,

with

e = exx + eyy + ezz, (4.10)
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where λ is the the bulk Lame’s constant and µ is the shear modulus. The presence of the

fluid does not impact the shear modulus of the saturated rock, therefore the shear moduli of the

drained rock and of the saturated rock are the same. The parameter α is the Biot’s coefficient,

defined by 1− KDry
KM

, with KDry being the bulk modulus of the drained rock, and KM being the

bulk modulus of the solid material (or the mineral). The constant M is the measure of coupling

between the fluid and the rock frame, defined by [ φ

K f
+ (α−φ)

KM
]−1. Equations 4.9 show that the

fluid flow contributes to the normal stress acting on the rock frame. In addition, the normal

solid stress e plays a role in the fluid pressure P. The equations 4.9 could be shown in a more

compact way by using index notation:

τi j = µ(vi, j + v j,i)+δi j(λvk,k−αMwk,k), (4.11)

P =−αMvk,k +Mwk,k, (4.12)

where δi j is the Kronecker delta in which:

δi j =


1, if i = j,

0, if i 6= j,
(4.13)

and

vk,k =
∂vx

∂x
+

∂vy

∂y
+

∂vz

∂ z
,etc. (4.14)

vi, j =
∂vi

∂x j
, (4.15)

Equations 4.11 to 4.12 are the stress-strain relations for a poroelastic medium. To construct

a numerical modeling algorithm for poroelastic media, which is the purpose of this thesis, the

dynamic equations are also required. The dynamic equations describe the relation between the

displacements of the solid and the fluid with the solid stresses and the fluid pressure. In the next

section we review Biot’s dynamic equations.
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4.1.2 Dynamic equations

Biot derived the dynamic equations based on the Lagrangian definition for two cases, with and

without friction. Here we review the case with friction which is the more general one. It is

assumed that the friction is caused by the relative movement of the fluid with respect to the rock

frame. The dissipation function D is then defined as a function of relative fluid particle velocity

that is the time derivative of the relative fluid displacement:

2D = b [Wx
2 +Wy

2 +Wz
2], (4.16)

Wi =
∂wi

∂ t
,

The factor b represents resistive damping due to the relative movement of the fluid with respect

to the solid, where b = η/κ with η and κ being the fluid viscosity and the rock permeability,

respectively (Norris, 1985). If the total force acting on the saturated rock unit cube in the

direction of xi is denoted by fi, and the one acting on the fluid is denoted by Fi, from the

Lagrange’s equations we have:
d
dt

(
∂T
∂Vi

)
= fi, (4.17)

d
dt

(
∂T
∂Wi

)
+

∂D
∂Wi

= Fi, (4.18)

where Vi is the solid particle velocity written as ∂vi
∂ t . Moreover, T is the kinetic energy for the

total volume of the saturated rock, defined as:

2T = ρ(V 2
x +V 2

y +Vz
2)+2ρ f (VxWx +VyWy +VzWz)+m(Wx

2 +Wy
2 +Wz

2), (4.19)

where ρ is the density of the saturated written as a function of the density of the fluid ρ f , the

density of the solid frame ρM, and the porosity φ :

ρ = φρ f +(1−φ)ρM, (4.20)

The parameter m is the fluid’s effective density, defines as T ρ f
φ

, where T is the tortuosity that is

a function of the pore shape. Furthermore, we explicitly have:

fi = ρ
∂Vi

∂ t
+ρ f

∂Wi

∂ t
, (4.21)
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Fi = ρ f
∂Vi

∂ t
+m

∂Wi

∂ t
+bWi, (4.22)

On the other hand, the forces are defined as stress gradients:

fi =
∂τi j

∂x j
(4.23)

Fi =
∂P
∂xi

(4.24)

Thus, Equations 4.21 and 4.22 become:

∂τi j

∂x j
= ρ

∂Vi

∂ t
+ρ f

∂Wi

∂ t
, (4.25)

∂P
∂x j

= ρ f
∂Vi

∂ t
+m

∂Wi

∂ t
+bWi, (4.26)

By rearranging these two equations, a set of velocity-stress relations can be obtained:

(mρ−ρ
2
f )

∂Vi

∂ t
= m

∂τi j

∂x j
+ρ f

∂P
∂xi

+ρ f bWi, (4.27)

(mρ−ρ
2
f )

∂Wi

∂ t
=−ρ f

∂τi j

∂x j
−ρ

∂P
∂xi
−ρbWi, (4.28)

In order to develop a staggered-grid finite-difference program, we need to write the partial

differential equations in a velocity-stress formulation. The Equations 4.27 and 4.28 are already

in that form. The rest of equations are obtained by taking a time derivative from both sides of

Equations 4.11 and 4.12. Finally, Biot’s velocity-stress partial differential equations are:

∂Vi

∂ t
= A

∂τi j

∂x j
−B

(
∂P
∂xi

+b Wi

)
, (4.29)

∂Wi

∂ t
= B

∂τi j

∂x j
+C

(
∂P
∂xi

+b Wi

)
, (4.30)

∂τi j

∂ t
= µ(

∂Vi

∂x j
+

∂Vj

∂xi
)+δi j(λ

∂Vk

∂xk
−αM

∂Wk

∂xk
), (4.31)

∂P
∂ t

=−αM
∂Vk

∂xk
+M

∂Wk

∂xk
, (4.32)

where all symbols are defined in Table 4.1.
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4.1.3 Wave equations in 2D case

In the 2D case, where the wave travels only in the x-z plane and i, j = x,z, Equations 4.28 to 4.31

make a set of 8 coupled equations:

∂Vz

∂ t
= A(

∂τxz

∂x
+

∂τzz

∂ z
)−B

(
∂P
∂ z

+bWz

)
, (4.33)

∂Vx

∂ t
= A(

∂τxx

∂x
+

∂τxz

∂ z
)−B

(
∂P
∂x

+bWx

)
, (4.34)

∂Wz

∂ t
= B(

∂τxz

∂x
+

∂τzz

∂ z
)+C

(
∂P
∂ z

+bWz

)
, (4.35)

∂Wx

∂ t
= B(

∂τxx

∂x
+

∂τxz

∂ z
)+C

(
∂P
∂x

+bWx

)
, (4.36)

∂P
∂ t

=−αM(
∂Vx

∂x
+

∂Vz

∂ z
)−M(

∂Wx

∂x
+

∂Wz

∂ z
), (4.37)

∂τxx

∂ t
= (2µ +λc)

∂Vx

∂x
+λc

∂Vz

∂ z
+αM(

∂Wx

∂x
+

∂Wz

∂ z
), (4.38)

∂τzz

∂ t
= (2µ +λc)

∂Vz

∂ z
+λc

∂Vx

∂x
+αM(

∂Wx

∂x
+

∂Wz

∂ z
), (4.39)

∂τxz

∂ t
= µ(

∂Vz

∂x
+

∂Vx

∂ z
), (4.40)

These equations will be used for numerical modeling. However, the equations need to be

discretized in order to be solved numerically in a computer program. The quantities on the left

hand side of these equations are the unknowns that will be calculated in the modeling process.

The model parameters, such as fluid and solid properties are incorporated in the right hand

side of these equations. The discrete form of these equations and details about the numerical

simulations will be explained in the next chapter.

4.2 Perfectly Matched Layers

One of the limitations of numerical modeling is that unlike in the real Earth, the computational

domain is finite. Therefore, a wave hitting the grid boundaries reflects back into the medium. In

order to overcome this problem a boundary condition is needed at the edges of the geological
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model to eliminate the undesired reflections. As discussed in the introduction of this chapter,

the PML boundary condition is a popular method in finite-difference modeling for absorbing

the outgoing waves at the edges. In order to employ this method, the computational grid is

divided into two regions: the internal region, where the Equations 4.33 to 4.40 are solved; and

the PML region, where the damping factors are added to these equations so that the outgoing

waves dissipate very quickly (Figure 4.1).

 

 a
x
>0

a
z
>0

a
x
>0

a
z
>0

a
x
>0

a
z
=0

a
x
>0

a
z
>0

a
x
>0

a
z
>0

a
x
>0

a
z
=0

a
x
=0

a
z
=0

Internal
Region

a
x
=0   a

z
>0

a
x
=0    a

z
>0

Figure 4.1: Schematic view of the PML region and how the damping factors ax and az are
defined in two directions of x and z.

The process of defining the PML equations for any sets of differential equations is accom-

plished by replacing the regular coordinate variables in the frequency domain by the complex

stretched variables, and also splitting the velocity and stress fields before transforming back to

time domain. The complex stretched variables are defined as (Chew and Liu, 1996; Sheen et al.,

2006):
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ξ̃ =
∫

ξ

0
Sξ

(
ξ́

)
dξ́ , Sξ (ξ́ ) = 1−

aξ (ξ́ )

iω
i = 1,2,3; (4.41)

Where ξ = x,z and aξ is the damping factor in ξ direction, and ω is the temporal frequency.

Considering the 2D case, equation 4.33 after transforming to the frequency domain becomes:

(−iω)V̂z = A
(

∂ τ̂xz

∂ x̃
+

∂ τ̂zz

∂ z̃

)
−B
(

∂ P̂
∂ z̃

+bŴx

)
, (4.42)

From the definition in Equation 4.40 we can use ∂/∂ ξ̃ = ( 1
Sξ
)∂/∂ξ to replace the complex

variable ξ̃ by the regular coordinate variable ξ . For simplicity of the equations, the velocities

and the stresses are split into x and z components. For example: Vx =V x
x +V z

x and Vz =V x
z +V z

z

and . Equation 4.33 after change of variables and splitting becomes:

(−iω)V̂ x
z =

(
A
Sx

)(
∂ τ̂xz

∂x

)
−B bŴ x

z , (4.43)

and

(−iω)V̂ z
z =

(
A
Sz

)(
∂ τ̂zz

∂ z

)
−
(

B
Sz

)
∂ P̂
∂ z
−B bŴ z

z . (4.44)

By transforming these equations back to the time domain we have:

(
∂

∂ t
+ax

)
V x

z = A
∂τxz

∂x
−B b

(
W x

z +ax

∫ t

−∞

W x
z dt́
)
, (4.45)(

∂

∂ t
+az

)
V z

z = A
∂τzz

∂ z
−B

∂P
∂ z
−B b

(
W z

z +az

∫ t

0
W z

z dt́
)
, (4.46)

where Vx
x and Vz

x are the split fields of Vx. The damping factors ax and az are defined based on

the location of the calculated point on the grid. The same approach could be used to obtain the

rest of the equations. Then we have:

(
∂

∂ t
+ax

)
V x

x = A
∂τxx

∂x
−B

∂P
∂x
−B b

(
W x

x +ax

∫ t

0
W x

x dt́
)
, (4.47)(

∂

∂ t
+az

)
V z

x = A
∂τxz

∂ z
−B b

(
W z

x +az

∫ t

0
W z

x dt́
)
, (4.48)
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(
∂

∂ t
+az

)
W z

z = B
∂τzz

∂ z
+C

∂P
∂ z

+C b
(

W z
z +az

∫ t

0
W z

z dt́
)
, (4.49)(

∂

∂ t
+az

)
W x

z = B
∂τzx

∂x
+C b

(
W x

z +ax

∫ t

0
W x

z dt́
)
, (4.50)

(
∂

∂ t
+az

)
W z

x = B
∂τxz

∂ z
+C b

(
W z

x +az

∫ t

0
W z

x dt́
)
, (4.51)(

∂

∂ t
+ax

)
W x

x = B
∂τxx

∂x
+C

∂P
∂x

+C b
(

W x
x +ax

∫ t

0
W x

x dt́
)
, (4.52)

(
∂

∂ t
+ax

)
Px =−M(α

∂Vx

∂x
+

∂Wx

∂x
), (4.53)(

∂

∂ t
+az

)
Pz =−M(α

∂Vz

∂ z
+

∂Wz

∂ z
), (4.54)

(
∂

∂ t
+az

)
τ

z
xx = λc

∂Vz

∂ z
+αM

∂Wz

∂ z
, (4.55)(

∂

∂ t
+ax

)
τ

x
xx = (2µ +λc)

∂Vx

∂x
+αM

∂Wx

∂x
, (4.56)

(
∂

∂ t
+az

)
τ

z
zz = (2µ +λc)

∂Vz

∂ z
+α M

∂Wz

∂ z
, (4.57)(

∂

∂ t
+ax

)
τ

x
zz = λc

∂Vx

∂x
+α M

∂Wx

∂x
, (4.58)

(
∂

∂ t
+az

)
τ

z
xz = µ

∂Vx

∂ z
, (4.59)(

∂

∂ t
+ax

)
τ

x
xz = µ

∂Vz

∂x
. (4.60)

The computational grid is then divided into two regions: the internal region and the PML region.

The field splitting doubles the number of the differential equations in the PML region, therefore

there will be 16 equations to solve (Equations 4.45 to 4.60).

Values of ax and az in the PML region could be either zero or nonzero depending on the

location of the grid point. This is shown in Figure 4.1. At the corners of the grid, both ax and
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az are nonzero so that the strong reflections generated in these areas are damped properly. The

values of ax and az are both zero in the internal grid. Consequently, the Equations 4.33 to 4.40

are solved in this region. Calculation of ax and az in this study is based on the criteria suggested

by Collino and Tsogka (2001). For example:

ax = log
(

1
R

)(
3Vp

2

)(
x2

L3
PML

)
, (4.61)

where R is the theoretical reflection coefficient and x is the distance from the PML boundary.

LPML=nPML×h is the thickness of the PML region, where nPML is the number of the grid points

included in the PML boundary, and h is the grid spacing.

4.3 Summary

In this chapter Biot’s theory of poroelasticity was reviewed, and the velocity-stress partial dif-

ferential equations for the poroelastic media were presented. These equations are needed to

develop a program for modeling seismic wave propagation in fluid saturated media. Our pur-

pose is to develop a finite-difference modeling program based on Biot’s theory, and to examine

the developed program for a carbon capture and storage project.

Due to limitations of the computational domain, the numerical models are finite in dimen-

sions. Therefore, the waves that hit the boundaries of the computational grid, reflect back into

the medium and generate artifacts. In order to avoid this issue, a Perfectly Matched Layer

(PML) boundary is added to the the grid, in which region a different set of equations are solved.

The PML equations and also the derivation of these equations were presented in this chapter.

This layer acts as a highly attenuating medium and absorbs any outgoing wave. The discrete

form of Biot’s equations and also the PML equations will be explained in the next chapter.
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Table 4.1: List of symbols and their definitions

symbol discerption

ei j solid strain 1
2

(
∂vi
∂x j

+
∂v j
∂xi

)
τi j solid stress tensor
~v particle displacement of the solid
~u particle displacement of the fluid
~w particle displacement of the fluid with respect to the solid ~v−~u
ζ ∇.(~v−~u)
µ shear modulus of the rock
λc Lame parameter of the saturated rock

α Biot’s coefficient
(

1− KDry
KM

)
KM bulk modulus of the mineral (the solid)

KDry bulk modulus of the dry rock frame
K f bulk modulus of the fluid
M coupling modulus
P fluid pressure
Vi particle velocity of the solid ∂ui

∂ t
Wi particle velocity of the fluid relative to the solid
ρ f density of the fluid
ρM density of the mineral (the solid)
ρsat density of the saturated rock φρ f +(1−φ)ρM
φ porosity
m the fluid effective density T ρ f /φ

T tortuosity
factor b resistive damping factor η/κ

κ permeability
η fluid viscosity

A
(

m
mρ−ρ2

f

)
B Coefficients defined in this thesis for simplicity

(
−ρ f

mρ−ρ2
f

)
C

(
−ρ

mρ−ρ2
f

)
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Chapter 5

Finite difference modeling

5.1 Introduction

Predicting the observed seismic data is an important step in seismic inversion and interpreta-

tion. The finite-difference method is relatively dominant among all other forward modeling

methods for several reasons. The main reason is that the finite-difference method calculates

the complete waveform and therefore delivers more accurate results. Besides, complex models

can be handled effectively using this method. In the finite-difference technique a computational

space-time grid is defined and a set of partial differential equations is solved numerically in this

grid. Finite-difference algorithms can be also applied in the frequency domain. However, in

this thesis we only focus on the finite-difference time domain (FDTD) technique.

In order to solve the wave equations numerically using the finite-difference method, they

need to be first discretized. In this work the staggered grid technique was used for discretiza-

tion, in which some of the wave quantities are defined on a reference grid, and the rest of the

quantities are defined on a staggered grid, which is half a grid point shifted from the reference

grid. The staggered grid scheme was suggested by Madariaga (1976) and used to model an ex-

panding circular fault. The scheme was based on the particle velocities and stresses in circular

coordinates. Virieux (1984, 1986) applied the staggered grid scheme in Cartesian coordinates

to model P-SV waves in elastic heterogeneous media. Both Madariaga and Virieux used sec-

ond order operators in time and space, referred to as O(4t2,h2). Levander (1988) developed

a staggered grid scheme with a fourth order operator in space i.e. O(4t2,h4). In this thesis

Levander’s scheme was used to develop a finite-difference program for modeling wave propa-

gation in poroelastic media. This scheme and the discretized wave equations are explained in

more detail in the beginning of this chapter, and generated snapshots will be shown. Further-
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more, The effect of viscosity on the results will be presented, based on the modeled diffusive

and non-diffusive modes of the slow P-wave. Finally, at the end of this chapter the boundary

conditions and stability of the algorithm are discussed.

5.2 Discretization

In the finite-difference method the wave quantities are calculated on a numerical grid. For this

purpose, all quantities need to be assigned to times and spatial locations on a discrete numerical

grid. Therefore, the continuous time and locations need to be discretized into a grid trough a

discretization technique. For example in 2D case where the wave travels in the x− z plane, the

reference grid is defined as:

t = n∆t, n = 1,2,3, ...N,

x = ih, i = 1,2,3, ...I,

z = jh, j = 1,2,3, ...J, (5.1)

where ∆t is the time interval or step, and h is the grid size or the space interval. The total time

is therefore N∆t with N being the number of time steps used in the calculations. The size of

the model will be (Ih)×(Jh), where I and J are the number of the grid points in the x and z

directions.

In the time domain finite-difference method, the wave quantities at each time step are calcu-

lated based on the quantities calculated in the previous time steps. For example, the quantities

at the time of (n+1)∆t are calculated using the quantities calculated in the time n∆t. However,

the method that the quantities are calculated based on the other points in the grid depends on

the type of discretization technique and the differential operators that are used.

51



Figure 5.1: Schematic view of the staggered grid. The particle velocities of the solid and the
fluid, Vx, Vz, Wx and Wz are calculated on a staggered time grid and the rest of the unknowns
are defined on a regular time grid. The fluid pressure P and the normal stresses of the solid, τxx
and τzz are calculated on a regular spatial grid, and the rest of the unknowns re evaluated on a
staggered spatial grid.

5.3 The staggered grid technique

Equations 4.33 to 4.40 represent the velocity-stress formulation of the Biot’s equations of mo-

tion in poroelastic media. The left hand side of the equations are the time derivatives of the

unknown quantities. These quantities are: the particle velocities of the solid Vi and the fluid

relative to the solid Wi, the solid stresses τxx, τzz, τxz, and the fluid pressure P. As mentioned

previously, in the staggered grid technique some of the quantities are defined on a reference

grid, and the rest of the are defined on a staggered grid that is shifted half a grid size. In the

staggered grid method, the wave equations of motion are written as first order partial differential

equations in terms of velocities and stresses (Levander, 1988). For the poroelastic media the

quantities τxx,τzz and P are calculated on the reference grid, say, x=ih (Figure 5.1). The rest of

the quantities are then calculated on the staggered grid , say, x=(i+1/2)h, and z=( j+1/2)h.

The temporal grid is also consisted of both standard and staggered grids. The particle ve-
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locities, Vx, Vz, Wx, and Wz are calculated on a staggered time grid in which for example

t = (n+ 1/2)4t. The rest of unknowns are calculated on the standard time grid, in which

t = n4t (Figure 5.1). The coordinates of the grid points are represented by their indices.

For example, for the quantity Vz at the location of x=ih, and z=( j + 1/2)h and the time of

t = (n+1/2)4t is represented as Vz

∣∣∣n+1/2

i, j+1/2
. For all the quantities in the poroelastic medium in

the 2D case we have:

τxx(x,z, t) = τxx

[
ih, jh,n∆t

]
= τxx

∣∣∣n
i, j
,

τzz(x,z, t) = τzz

[
ih, jh,n∆t

]
= τzz

∣∣∣n
i, j
,

P(x,z, t) = P
[
ih, jh,n∆t

]
= P

∣∣∣n
i, j
, (5.2)

τxz(x,z, t) = τxz

[
(i+1/2)h,( j+1/2)h,n∆t

]
= τxz

∣∣∣n
i+1/2, j+1/2

, (5.3)

Vx(x,z, t) =Vx

[
(i+1/2)h, jh,(n+1/2)∆t

]
=Vx

∣∣∣n+1/2

i+1/2, j
,

Wx(x,z, t) =Wx

[
(i+1/2)h, jh,(n+1/2)∆t

]
=Wx

∣∣∣n+1/2

i+1/2, j
, (5.4)

Vz(x,z, t) =Vz

[
ih,( j+1/2)h,(n+1/2)∆t

]
=Vz

∣∣∣n+1/2

i, j+1/2
,

Wz(x,z, t) =Wz

[
ih,( j+1/2)h,(n+1/2)∆t

]
=Wz

∣∣∣n+1/2

i, j+1/2
, (5.5)

where all of these quantities are illustrated on a grid in Figure 5.1.

5.4 Discrete velocity-stress equations

In order to simulate wave propagation in the poroelastic media using the staggered-grid tech-

nique, the velocity-stress equations based on Biot’s theory needed to be solved numerically. For
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Figure 5.2: Calculation of4xτxz

∣∣∣
i, j+1/2

on the staggered grid (equation 5.9).

this purpose, Equations 4.33 to 4.40 were discretized using the staggered-grid finite-difference

approximation. For example Equation 4.33, after discretization becomes:

Vz

∣∣∣n+1/2

i, j+1/2
=Vz

∣∣∣n−1/2

i, j+1/2
+4t

[
A(Dxτxz +Dzτzz)−B

(
DzP+bWz

)]∣∣∣n
i, j+1/2

, (5.6)

where superscripts and subscripts denote temporal and spatial indices, respectively. For the

time derivative operator, a second order backward finite difference approximation is used, that

for function ψ is
∂ψ

∂ t
= Dtψ(t)≈ ψ(t)−ψ(t−4t)

4t
, (5.7)

therefore,

DtVz

∣∣∣n+1/2
≈

Vz
∣∣n+1/2−Vz

∣∣n−1/2

4t
. (5.8)

Furthermore, 4x and 4z are fourth-order O(h4) partial differential operators with respect to x

and z, that are centred about the quantity being calculated. For example :

4xτxz

∣∣∣
i, j+1/2

=

[
− c1

(
τxz

∣∣∣
i+3/2, j+1/2

− τxz

∣∣∣
i−3/2, j+1/2

)
+ c2

(
τxz

∣∣∣
i+1/2, j+1/2

− τxz

∣∣∣
i−1/2, j+1/2

)]
/h, (5.9)

where c2 = 9/8 and c1 = 1/24, are the inner and outer difference coefficients defined by Levan-

der (1988). Figure 5.2 shows how 4xτxz

∣∣∣
i, j+1/2

is being calculated using the values of τxz on
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Figure 5.3: Calculation of4zτzz

∣∣∣
i, j+1/2

on the staggered grid (equation 5.10).

four adjacent grid points. The rest of the approximations could be derived similarly. Another

example is shown in Figure 5.3 that presents the calculation of4zτzz|i, j+1/2:

4zτzz

∣∣∣
i, j+1/2

=

[
− c1

(
τzz

∣∣∣
i, j+2
− τzz

∣∣∣
i, j−1

)
+ c2

(
τzz

∣∣∣
i, j+1
− τzz

∣∣∣
i, j

)]
/h. (5.10)

5.4.1 Discrete equations in the internal region

Equation 5.6 is the discretized form of Equation 4.33. The discretization could be accomplished

similarly for the rest of the equations. Thus, for Equations 4.33 to 4.40 we have:

Vz

∣∣∣n+1/2

i, j+1/2
=Vz

∣∣∣n−1/2

i, j+1/2
+4t

[
A(Dxτxz +Dzτzz)−B

(
DzP+bWz

)]∣∣∣n
i, j+1/2

, (5.11)

Vx

∣∣∣n+1/2

i+1/2, j
=Vx

∣∣∣n−1/2

i+1/2, j
+4t

[
A(Dxτxx +Dzτxz)−B

(
DxP+bWx

)]∣∣∣n
i+1/2, j

, (5.12)

Wz

∣∣∣n+1/2

i, j+1/2
=Wz

∣∣∣n−1/2

i, j+1/2
+4t

[
B(Dxτxz +Dzτzz)−C

(
DzP+bWz

)]∣∣∣n
i, j+1/2

, (5.13)
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Wx

∣∣∣n+1/2

i+1/2, j
=Wx

∣∣∣n−1/2

i+1/2, j
+4t

[
B(Dxτxx +Dzτxz)−C

(
DxP+bWx

)]∣∣∣n
i+1/2, j

, (5.14)

P
∣∣∣n+1

i, j
= P

∣∣∣n
i, j
−M4t

[
α (DxVx +DzVz)+(DxWx +DzWz)

]∣∣∣n+1/2

i, j
, (5.15)

τxx

∣∣∣n+1

i, j
= τxx

∣∣∣n
i, j
+4t

[
(2µ +λc)DxVx +λcDzVz +αM (DxWx +DzWz)

]∣∣∣n+1/2

i, j
, (5.16)

τzz

∣∣∣n+1

i, j
= τxx

∣∣∣n
i, j
+4t

[
(2µ +λc)DzVz +λcDxVx +αM (DxWx +DzWz)

]∣∣∣n+1/2

i, j
, (5.17)

τxz

∣∣∣n+1

i+1/2, j+1/2
= τxx

∣∣∣n
i+1/2, j+1/2

+4t
[
µ (DxVz +DzVx)

]∣∣∣n+1/2

i+1/2, j+1/2
. (5.18)

These equations are used in the internal region of the computational grid. As explained earlier,

the grid is divided into two region in order to have an absorbing region close to the boundaries

of the grid. The absorbing boundary region is referred to as the ”PML region” since the PML

method is used in this region.

5.4.2 Discrete equations in the PML region

At the PML region Equation 5.18 is split into the following equations:

V x
z

∣∣∣n+1/2

i, j+1/2
= (1−ax4t)V x

z

∣∣∣n−1/2

i, j+1/2
+4t

[
A4xτxz

−Bb
(

W x
z +ax

∫ t

0
W x

z dt́
)]∣∣∣∣n

i, j+1/2
, (5.19)

V z
z

∣∣∣n+1/2

i, j+1/2
= (1−az4t)V z

z

∣∣∣n−1/2

i, j+1/2
+4t

[
A4zτzz−B4zS

−Bb
(

W z
z +az

∫ t

0
W z

z dt́
)]∣∣∣∣n

i, j+1/2
, (5.20)

The finite-difference approximation for the rest of equations could be obtained similarly and

used to develop the modeling program. All the Biot’s equations are discretized similarly to

develop the poroelastic finite-difference program. The discrete equations after applying the

PML are:
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V z
x

∣∣∣n+1/2

i+1/2, j
= (1−az4t)V z

x

∣∣∣n−1/2

i+1/2, j
+4t

[
ADzτxz

−Bb
(

W z
x +az

∫ t

0
W x

x dt́
)]∣∣∣∣n

i+1/2, j
, (5.21)

V x
x

∣∣∣n+1/2

i+1/2, j
= (1−ax4t)V x

x

∣∣∣n−1/2

i+1/2, j
+4t

[
ADxτxx−BDxP

−Bb
(

W x
x +ax

∫ t

0
W x

x dt́
)]∣∣∣∣n

i+1/2, j
, (5.22)

W z
z

∣∣∣n+1/2

i, j+1/2
= (1−az4t)W z

z

∣∣∣n−1/2

i, j+1/2
+4t

[
BDzτzz +CDzP

+Cb
(

W z
z +az

∫ t

0
W z

z dt́
)]∣∣∣∣n

i, j+1/2
, (5.23)

W x
z

∣∣∣n+1/2

i, j+1/2
= (1−ax4t)W x

z

∣∣∣n−1/2

i, j+1/2
+4t

[
BDxτxz

+Cb
(

W x
z +ax

∫ t

0
W x

z dt́
)]∣∣∣∣n

i, j+1/2
, (5.24)

W z
x

∣∣∣n+1/2

i+1/2, j
= (1−az4t)W z

x

∣∣∣n−1/2

i+1/2, j
+4t

[
BDzτxz

+Cb
(

W z
x +az

∫ t

0
W z

x dt́
)]∣∣∣∣n

i+1/2, j
, (5.25)

W x
x

∣∣∣n+1/2

i+1/2, j
= (1−ax4t)W x

x

∣∣∣n−1/2

i+1/2, j
+4t

[
BDxτxx +CDxP

+Cb
(

W x
x +ax

∫ t

0
W x

x dt́
)]∣∣∣∣n

i+1/2, j
, (5.26)

Pz
∣∣∣n+1

i, j
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5.5 Source implementation

One of the key steps in finite difference modeling is the implementation of the source. In this

thesis, we assume that an explosive source generates only a compressional (P) wave. This type

of source could be used both in land and marine seismic surveys. In this thesis an explosive

source was used in the numerical modeling. To generate a source pulse in the model, a wavelet

is injected into the stress tensors through time. In the case of the explosive source, the wavelet

needs to be added to the solid normal stresses τxx and τzz. Since the poroelastic medium is

composed of a fluid and a solid phase, the source needs to be also added to the fluid pressure P.

This approach has been used previously by (Zhu and McMechan, 1991). In terms of the energy,

the source energy is partitioned between the solid and the fluid phases. This is done by scaling

the wavelet by the factor of (1−φ) for the solid phase, and by the factor of φ for the fluid phase

with φ being the porosity. Therefore, two source wavelets are defined:

wsolid = (1−φ)w, (5.35)
58



0 50 100

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

Time (ms)

A
m

pl
itu

de

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

Frequency(Hz)

A
m

pl
itu

de

a) b)

Figure 5.4: The Ricker wavelet used as an explosive source in the modelings, represented in
time (a) and frequency (b) domains. The dominant frequency of this wavelet is 40 Hz.

and

w f luid = φw, (5.36)

where w is the source wavelet.

The selected wavelet for the source in this work was the zero-phase Ricker wavelet. The

Ricker wavelet is the second derivative of a Gaussian function, and is defined as:

f (t) = (1−2π
2 f 2

domt2)e−π2 f 2
domt2

, (5.37)

where fdom is the dominant frequency of the wavelet, and t is the length of the wavelet in time.

Figure 5.4 shows the wavelet used in this thesis, in both time and frequency domains. The

dominant frequency of this wavelet is 40 Hz which is a typical dominant frequency in seismic

data. This frequency has the maximum amplitude in the spectrum, as shown in Figure 5.4.b.
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5.6 Generated snapshots

In this section we present some numerical examples to verify our finite-difference program.

The numerical examples are based on the Quest project, and the details about the well log data

were discussed in Chapter 3. The target formation for injection in the Quest project is the Basal

Cambrian Sandstone (BCS). The in-situ properties of the BCS were extracted from the well data

and listed in Table 3.3 as BCSBase. In addition, using Gassmann’s method, 40% of the in-situ

brine was replaced by CO2 and the properties of the BCS after substitution were calculated.

These values that are listed in Table 3.3 as BCSMon, represent the BCS after injecting CO2. For

numerical examinations of the developed finite-difference algorithm, two example models were

defined and used as inputs in the program.

5.6.1 Uniform model with zero fluid viscosity: non-diffusive slow mode

The first example model is a uniform model with the properties of BCSBase (Table 3.3). The

dimensions of this model are 2 km by 2 km. The Ricker wavelet in Figure 5.4 with the dominant

frequency of 40 Hz was used as an explosive source for modeling. The source is located at

the center of the grid, that is (x,z)=(1000,1000). The time step and grid size were chosen to be

respectively 0.2 ms and 2 meters. Figure 5.5 shows this model along with the location of the

source.

The unknowns are the solid and fluid particle velocities W and V, the solid stresses τi j, and

the fluid pressure P that are calculated by the program. Biot’s theory predicts a slow wave

(Ps), generated due to the relative movement of the fluid with respect to the solid. The slow

P-wave is not noticeable in seismic frequencies unless the factor b is close to zero. The reason

is that in the seismic frequencies, the slow mode attenuates quickly due to viscosity of the fluid

(Carcione et al., 2010; Carcione and Quiroga-Goode, 1995). However, if the fluid’s viscosity

(and therefore the factor b) is zero, the slow P-wave will be a traveling wave even in seismic

frequencies. In this section we present the wave behavior in a uniform model in the absence
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Figure 5.5: The uniform model used in examples, and the location of the source. This model is
based on the in-situ properties of the BCS that are listed in Table 3.3 as BCSBase.

of the fluid viscosity, when b = 0. We refer to this type of slow P-wave as ”non-diffusive”.

In comparison, in the section 5.6.2 we show the results from the same model, with the same

physical properties but with a nonzero viscosity, or when b 6= 0. This type of slow P-wave is

referred to as ”diffusive”.

Figure 5.6 shows the calculated particle velocities of the solid and the fluid at the time of

0.14 s for the case of b = 0. The slow P-wave is observed as a traveling mode in the snapshots,

and has a relatively small amplitude compared to the ”fast P-wave”. The slow and the fast P-

waves are denoted in the figure, respectively by Ps and P f . It can be noticed that the slow P-wave

in the fluid snapshot has a larger amplitude relative to the fast P-wave in the same snapshot. This

could be due to the nature of the slow P-wave which is generated by the fluid motion.

5.6.2 Uniform model with nonzero fluid viscosity: diffusive slow mode

The uniform model is used as our next example to see the wave propagation when the factor b is

nonzero. Figure 5.7 shows the snapshots from this model with two different nonzero mobilities,
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Figure 5.6: Sample snapshots of the vertical particle velocities of the solid (top row) and the
fluid with respect to solid (bottom row) in both x and z directions. The model used in this
example is the uniform model with b = 0. The snapshots were taken at the time of 0.14 s. The
fast and the slow P-waves are respectively denoted by P f and Ps.
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along with the snapshots for the same model with zero b factor. The first column in the left is

the same as our last example which was shown in Figure 5.6. One of the b factor values was

estimated based on the estimated pore fluid viscosity in our example, and the permeability of

the target formation, BCS. The BCS is known to have a permeability of 1 mD to >1 D, thus the

permeability of the porous rock was assumed to be 1 D. The viscosity of the fluid was calculated

based on the viscosity of the CO2 and brine mixture in the temperature and pressure of the BCS.

In this case, the average viscosity for the mixture of brine and CO2 was approximated to be

10−5 kg/ms. Therefore, the estimated value of b for the BCS was 107Pa sm−2. The other value

of b used in this example was randomly chosen so that it falls between the other two values of

b = 0 and b = 107Pa sm−2. The selected b value was 105Pa sm−2 which is smaller than the

107Pa sm−2 and larger than zero. It is obvious that by increasing the factor b, the amplitude of

the slow P-wave decreases and the wave becomes diffusive. It is also clear in the fluid snapshots

that the fluid movement decreases by increasing b.

In Figure 5.8, traces from the two above examples have been plotted in order to examine

the effect of b factor on the generated traces. In the case that b = 0, a non-diffusive slow P-

wave is generated. The slow P-wave is also generated in the case of nonzero b factor (b =

105Pa sm−2), but in a diffusive form. By comparing the two traces through time we can see

that the diffusive slow P-wave attenuates very quickly, while the non-diffusive one remains

unchanged. This is consistent with the Biot’s theory that suggests that the slow P-wave at

typical seismic frequencies is diffusive.

Another fact that could be observed in Figure 5.8 is the difference in amplitudes of the fast P-

waves. In poroelastic media, the fast P-wave amplitude reduces due to the wave partitioning and

the presence of the slow P-wave. It is obvious that the difference between the two fast P-wave

amplitudes in this figure is negligible. It can be concluded that the energy loss in poroelastic

media is more due to the energy partitioning than to only the magnitude of the factor b.
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Figure 5.7: Sample snapshots of the vertical particle velocities of the solid (top row) and the
fluid respect to solid (bottom row) for three different values of factor b. By increasing the value
of b, the slow P-wave starts to become diffusive and being absorbed in the medium. The fast
and the slow P-waves are respectively denoted P f and Ps. The snapshots were taken at the time
of 0.14 s.

5.6.3 Two layer model with zero fluid viscosity

The second example model is composed of two homogeneous layers (Figure 5.9). The lower

layer is the BCS with in-situ properties, where the pore fluid is 100 % brine. This layer repre-

sents the baseline scenario for the Basal Cambrian Sands. As mentioned previously, the prop-

erties of the BCS for the baseline scenario are listed in Table 3.3 as BCSBase. The upper layer,

shows the BCS after replacing 40 % of the brine with CO2 which represents the monitor sce-

nario for this formation. The properties of the monitor scenario for the BCS are listed in Table

3.3 as BCSMon. These two layers are in fact two sandstones with the same solid properties but

with different pore fluid. This model represents a storage rock in which the injected CO2 has

migrated towards the top of the rock due to the buoyancy force. The change in the fluid content
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Figure 5.8: Traces from the vertical particle velocities of the solid in poroelastic media, for two
values of b = 0 and b = 105Pa sm−2. The slow P-wave in the case of b 6= 0 dissipates quickly
while in the case of b = 0 it does not dissipate in the medium.
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Figure 5.9: The two-layer model used in the examples. The top layer represents the BCS with
in-situ properties, also listed in Table 3.3 as BCSBase. The lower layer represents the BCS after
injecting CO2, also listed in Table 3.3 as BCSMon.

of the rock leads to a change in the seismic response of the model. The purpose of showing

this example is to see the mode conversions at a boundary made by differences in pore fluid,

and also to verify the developed algorithm. In this example, the value of the b factor for both

layers was assumed to be zero in order to observe the slow P-wave and consequently the mode

conversions at the boundary. Figure 5.10.a shows a snapshot of the vertical particle velocity of

the solid calculated for this model at the time of 0.2 s. The source was located at (x,z)=(1000

m,900 m) and the grid size was the same as the previous example. As expected the slow P-

wave (Ps) is generated due to the fluid movement relative to the solid frame. In addition, there

are some mode conversions at the boundary including a fast P-wave converted from the slow

P-wave (PsP f ), and a slow P-wave converted from the fast P-wave (P f Ps). The snapshots have

been magnified by the factor of 100 in order to better display the waves with lower amplitudes.

In order to compare the poroelastic algorithm with an elastic one, in which the medium is

assumed to be homogeneous solid with no fluid, the same model was used in the program but

with an elastic assumption. This was accomplished by setting the fluid properties and the poros-
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Figure 5.10: Snapshots of the vertical particle velocity of the solid for the two-layer model,
calculated for a) poroelastic case, and b) elastic case. The horizontal line at the depth of 1000m
represents the boundary. To see the reflections more clearly, the amplitudes are magnified by
factor of 100. The direct and reflected waves are denoted in the figure as follows: the direct
fast P-wave (P f ), the reflected fast P-wave (P f P f ), the slow P-wave (Ps), the S-wave converted
from the fast P-wave (P f S), the slow P-wave converted from the fast P-wave (P f Ps), and the
fast P-wave converted from the slow P-wave (PsP f ).

ity equal to zero and using the elastic properties of the saturated rock as model parameters. This

way the presence of fluid as a separate phase is ignored and the rock behaves as an elastic solid

in the modeling process. Figure 5.10.b shows the generated elastic snapshot. This figure illus-

trates how the wave propagates differently in an elastic medium versus a poroelastic medium.

Although the slow P-wave cannot be detected in real seismic data, the energy loss caused by

the fluid flow decreases the wave energy and therefore the amplitude of the reflections.

5.7 PML boundary condition

I now consider the uniform model used in Section 5.6.1 to examine the boundary conditions.

Figure 5.11 shows the snapshot from the uniform model at a time of 0.32 s with different thick-

nesses of the PML boundary used in the algorithm. These thicknesses are nPML=0,10,20,30,

where nPML is the number of the grid points used as the PML boundary. In the case that there
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is no PML boundary, where nPML=0, strong reflections are generated at the model borders as

shown in Figure 5.11.a. These reflection start to fade by increasing the thickness of the PML

region (Figure 5.11.b to d). For this model, we notice that with 20 nodes for the PML layer,

the artifacts are effectively removed. This result is satisfactory and therefore there is no need to

increase the PML thickness any further.

Figure 5.12 shows the computational grid used for this model with nPML=30. The color-map

represents the summation of attenuation factors az and ax which are calculated from Equation

4.61. The values of the factors are zero in the internal region, and nonzero in the PML region.

The value of ax+az is larger at the corners because in that areas the wave hits the borders from

both x and z directions. Therefore, at the corners both ax and az are nonzero. Figure 5.13 (top

row) shows the generated shot gathers for the uniform model in the case of b 6= 0, without

PML boundary and with a PML boundary of 20 nodes. Selected traces from both gathers at

the location of x= 600 m are also shown in the bottom row of the figure. It is observed from

the traces, that the artifacts are absorbed efficiently by the PML boundary method. Similarly,

generated gathers and selected traces for the uniform model in the case of zero b factor are

shown in Figure 5.14. Likewise, in this case, the artifacts have been absorbed very well.

As I showed here, the PML boundary method is an efficient and effective way to attenuate

the outgoing waves at the computational grid boundaries. It is worth mentioning that having

a sharp transition from the internal grid to the PML grid could also generate some reflections.

This problem could be partially resolved by smoothing the damping factors ax and az. In all of

our examples these factors have been smoothed accordingly.

5.8 Stability

In the finite-difference technique, the wavefield quantities at each time step are calculated from

the ones calculated at the earlier times. Since the wave equations are approximated and trun-

cated in this technique, the error caused by truncations could accumulate through time. This
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Figure 5.11: Snapshots of the vertical particle velocity of the solid with different values of
nPML=0, 10, 20, 30. By increasing the thickness of the PML region, the outgoing waves are
absorbed more effectively. To see the artifacts more clearly, the amplitudes are magnified by
the factor of 10.
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Figure 5.12: a) An example of a PML grid defined for the uniform model with dimensions of
1000 m × 1000 m. The image shows the summation ax+az where ax and az are the attenuation
factors in x and z directions. b) A closer view of the corner of the grid. In this example 20
grid points are used in the PML layer. The attenuation factors are zero at the internal grid and
increase when moving towards the grid borders.

problem could be overcome by selecting a smaller time step and a larger grid size for calcula-

tions. However, selecting a larger grid size results in dispersion of the wave. Therefore, finding

a stability condition for the finite difference algorithm helps to optimize the selected intervals

to avoid either instability or dispersion of the numerical solution. Masson et al. (2006) derived

the stability condition for staggered-grid finite-difference scheme solving the Biot’s equations.

They showed that, for a poroelastic medium in the case of b = 0, the the surface separating the

stable and unstable region is defined by:

4t = h

√√√√π2−
√

π2
2 −4π3π1

2(c1 + c2)2π3
, (5.38)

where 4t and h are respectively the time step and the grid size. Furthermore, c1 = 1/24 and

c2 = 9/8 are the difference coefficients in the fourth order spatial partial differential operator,
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Figure 5.13: Sample shot gathers generated for the uniform model with b 6= 0, using the poroe-
lastic algorithm, along with the selected traces from these gathers. a) No PML is used, therefore
strong reflections from the boundaries are generated. b) A PML boundary with 20 nodes is used
and the artifacts are efficiently removed. The amplitudes are magnified by the factor of ten to
better illustrate the artifacts. c) and d) are selected trace at location of x=600 m respectively
from shot gathers in a and b.
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Figure 5.14: Sample shot gathers generated for the uniform model with b = 0, using the poroe-
lastic algorithm, along with the selected traces from these gathers. a) No PML is used, therefore
strong reflections from the boundaries are generated. b) A PML boundary with 20 nodes is used
and the artifacts are efficiently removed. The amplitudes are magnified by the factor of ten to
better illustrate the artifacts. c) and d) are selected trace at location of x=600 m respectively
from shot gathers in a and b.
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and

π1 = mρ−ρ
2
f , (5.39)

π2 = m(λ +2µ)+ρM+2αMρ f , (5.40)

π3 = M
(
λ +2µ−α

2M
)
, (5.41)

where all the parameters are previously introduced (Table 4.1). The surface separating the

stable and unstable areas is plotted for our uniform model in Figure 5.15. This figure shows this

surface as a function of4t, h and m/ρ f . It is noticed that the relationship between h and4t is

always linear regardless of the magnitude of m/ρ (Figure 5.15.c).

It is worth mentioning that, for π1=0, ∆t is equal to zero, and thus the scheme becomes

unconditionally unstable. According to Equation 5.39 this condition happens when m/ρ f =

ρ f /ρ . Therefore, the solution is always unstable for m/ρ f < ρ f /ρ as also seen in Fig ure 5.15.

To test the Masson et al. (2006) stability criterion, we tried different pairs of (∆t,h) for our

program. These pairs are shown as data points in Figure 5.16. The pairs that result in instability

are represented by red crosses, and the ones with stable results are represented with blue stars.

Furthermore, Masson et al. (2006) stability criteria calculated for our model is plotted on top

of these points. The results show that, the stability of our algorithm matches the Masson et al.

(2006) criteria quite well. However, the algorithm in the case with diffusion would be more

unstable due to the presence of the diffusive slow P-wave. For example, Figure 5.17 shows

snapshots generated using different pairs of (∆t,h) for both diffusive and non-diffusive cases. It

is noticed that, the pair(∆t,h)=(0.3 ms,4 m) gives unstable results in the diffusive case while the

results of the same pair in the non-diffusive case is stable.

Another common issue in finite-difference modeling is numerical dispersion, which is basi-

cally propagating wave packets with different velocities. The dispersion is normally controlled

by ensuring that the grid size is not too large relative to the wavelength. A good criteria to use

is the one used by Levander (1988) for the fourth order finite-difference approximation. He

suggested that, at least 5 grid points should be sampled in one wavelength in order to avoid
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Figure 5.15: a) The surface separating the stable and unstable areas calculated based on Masson
et al. (2006) criteria for our uniform model. This surface is plotted as a function of the time
interval ∆t, the grid size h and the factor m/ρ f . b) The ∆t–m/ρ f plane view of the surface,
which indicates for m/ρ f < ρ f /ρ the solution is always unstable. c) The ∆t–h view, where the
relationship between ∆t and h is always linear.
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Figure 5.16: Several pairs of (∆t,h) were used to test the stability of our algorithm for the
uniform model (for b = 0). The stable pairs are shown with blue stars and the unstable ones are
shown with red crosses. The straight line is the Masson et al. (2006) stability criteria calculated
for this model. The stability of our algorithm matches the Masson et al. (2006) criteria very
well.

dispersion. Therefore,

h < vmin/5 fmax, (5.42)

where vmin is the velocity of the slowest wave traveling in the medium, and fmax is the maximum

source frequency. In the poroelastic media, for the non-diffusive case, the slowest wave is the

slow P-wave, therefore there will be more limitations on defining the grid spacing. This is

shown in figure 5.17.d to f in which by increasing h, the slow P-wave becomes more dispersive.
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Figure 5.17: Sample snapshots with different pairs of (∆t,h). The top row of snapshots belong
to the diffusive case (b 6= 0) and the bottom row snapshots belong to the non-diffusive case
(b = 0). The pair (∆t,h)=(0.3 ms,4 m) leads to instability in the solution, indicating that the
diffusive mode makes the solution less stable than the non-diffusive case. Moreover, the pair
(∆t,h) = (0.2 ms,6 m) lead to dispersion in the slow P-wave confirming that increasing the grid
size results in more numerical dispersion.
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5.9 Summary

I developed a 2D velocity-stress staggered-grid finite-difference code in MATLAB to simulate

the wave propagation in poroelastic media. Biot equations of motion were discretized using a

second order approximation for the time derivatives, and a fourth order approximation for the

space derivatives. The program was then verified by showing some numerical models. In order

to avoid the reflections from the grid boundaries a Perfectly Matched Layer (PML) was added

to the algorithm. I then showed that how effectively the PML absorbs the outgoing waves at

the boundaries. At the end of this chapter I carried out stability analysis and showed that our

algorithm’s stability matches the criteria suggested by Masson et al. (2006). We also showed

that the presence of the the diffusive slow P-wave mode (when b 6= 0) makes the algorithm less

stable than the case of zero fluid viscosity (b=0). By comparing the reduce in the amplitude

of the fast P-wave in both cases of diffusive and non-diffusive, I realized that the energy loss

is mainly due to the wave partitioning. In both cases the fast P-wave has lost amplitude with

a negligible difference. However, in the next chapter I perform a time-lapse modeling for the

Quest project considering the diffusive case.
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Chapter 6

Time-lapse model-based numerical simulations for the Quest

Carbon Capture and Storage project

6.1 Introduction

Prior to injection of CO2 in Carbon Capture and Storage projects (CCS), seismic time lapse

simulations need to be carried out to ensure the injected CO2 could be detected in the seismic

data in order to monitor the CO2 over time. This is accomplished by defining a baseline scenario

in which the storage formation is saturated with the in-situ fluid, and a monitor scenario in

which some of the in-situ fluid is replaced by CO2. The baseline and monitor scenarios are

then used as the input models in the modeling program, and a set of synthetic data is generated

for each scenario. Since the density and seismic P-wave velocity of the CO2 is much lower

than the formation’s in-situ fluid, the physical properties of the storage rock undergo changes

after injection. The most important change is the decrease in P-wave velocity and density of the

saturated rock which leads to a change in the reflection coefficients of the top and the base of the

storage formation. Moreover, the wave travels through the CO2 plume with a slower velocity,

causing a time delay for the reflections within and below the injection zone.

In the previous chapter the diffusive and non-diffusive slow P-wave modes were modeled

using the poroelastic algorithm that I have developed, and as expected the slow P-wave was not

detected in seismic data due to diffusion. Moreover, in both cases of diffusive and non-diffusive

modes, some energy loss was observed that are believed to be caused by wave partitioning. By

comparing the traces from both cases, a negligible difference between the fast P-wave ampli-

tudes in the two cases was noticed. This observation suggests that in the fluid saturated media,

the wave partitioning is more important in the energy loss than the fluid viscosity.
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In this chapter a model-based time-lapse seismic simulations is carried out for the Quest

project. For this purpose, a baseline and a monitor scenario are defined based on the available

well logs from the area. The baseline scenario represents the subsurface for the Quest project

prior to injection of CO2. The monitor scenario represents the subsurface after injecting a

certain amount of CO2 into the BCS, and is generated by adding a CO2 plume to the BCS in

the baseline scenario. Both models are then run through the poroelastic algorithm to generate

synthetic seismic sections. In order to observe the time-lapse effect caused by injection of CO2

the monitor section is subtracted from the baseline section to obtain the residual section. Finally,

to compare the developed poroelastic algorithm with an elastic one, the time-lapse modeling is

also carried out using an elastic program and the results are compared with the ones from the

poroelastic algorithm.

6.2 Baseline scenario

The baseline scenario is defined based on the physical properties of the subsurface prior to

injection. The data simulated for this scenario is used as a reference data in order to track

changes after injection of the CO2. Figure 6.2.a shows the baseline acoustic impedance model

defined for modeling. Acoustic impedance is the product of the bulk density and the P-wave

velocity of the material. The reflection coefficients at the boundary of two materials depend on

the contrast between their impedances. The higher the contrast, the larger the magnitude of the

reflection coefficient at the boundary. For example, layer L3 in the red color, has the largest

impedance in the model. This layer is the Precambrian basin with high values of velocity and

density. The high impedance contrast between the BCS and the Precambrian basin, that is the

BCS-L3 boundary, suggests a large reflection. In contrast, the reflection generated from the top

of the BCS, that is the BCS-L2 boundary, will be a weak reflection.

This model is a very simple model composed of 4 layers, and was defined based on the well

log data in Chapter 3. Only the physical properties of BCS are affected by the CO2 injection
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and the rest of the layers remain unchanged after injection. Therefore, the reflections and travel

times of any boundary that is not in contact with the BCS, do not alter by injection of CO2.

Consequently, having finer layers in the model is not necessary for the time-lapse modeling

since the unchanged reflections will finally cancel out by subtraction of the sections.

Due to lack of information about the poroelastic properties of the subsurface, all layers other

than BCS were assumed to be elastic. This was done by setting the porosity and fluid properties

of these layers equal to zero in the poroelastic program and using the elastic properties of the

saturated rock as the properties of the solid phase. This is identical to using an elastic algorithm.

The physical properties of the elastic layers, which are denoted by L1,L2,L3 are listed in Table

6.1. The poroelastic properties of BCS for the baseline scenario were extracted from the logs

earlier in Chapter 3, and listed in Table 3.3 as BCSBase.

Table 6.1: Physical properties of the elastic layers in the baseline and monitor scenarios.

Layer Density (kg/m3) P-wave velocity (m/s) S-wave velocity (m/s)

L1 2600 3980 2380

L2 2550 4000 2200

L3 2650 5800 3300

6.3 Monitor scenario

For the monitor scenario some amount of CO2 is needed to be hypothetically injected into

the storage formation. For this purpose, a CO2 plume is added to the BCS layer to generate a

model that represents the subsurface after injection. The properties of the plume are the same as

the properties of the BCS after substituting 40% of the in-situ brine with CO2. These properties

were calculated using the Gassmann’s fluid substitution modeling earlier in Chapter 3 and listed

in Table 3.3 as BCSMon. For both scenarios the factor b for BCS was assumed to be the constant

value of 107 Pa sm−2. Therefore the slow P-wave mode in this modeling is of the diffusive type

and does not appear in the synthetic data as a traveling wave.
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The CO2 plume is assumed to have a cylindrical shape for simplicity in calculations. In

reality, the flow path of the CO2 strongly depends on the permeability distribution in the storage

rock. However, we do not focus on the possible shapes and distribution of the plume in this

dissertation. Thus, the numerical simulations is carried out with the simple cylindrical shape

for the plume (Figure 6.1).

6.3.1 Plume size calculation

The size of the plume for the monitor model was estimated from the volumetric calculations.

This was done based on the amount of the CO2 injected in the course of one year, that is 1.2

million tonnes. It was shown in Chapter 3, that based on the Gassmann’s fluid substitution

modeling, the maximum change in the P-wave velocity occurs between 20% and 40 % CO2

saturation. For this study the CO2 saturation in the monitor scenario was chosen to be 40% that

is a typical value for CO2 saturation in such medium. To estimate the size of the plume, the

volume of the CO2 needed to be first calculated from its mass and density. The density of CO2

was previously calculated based on the depth and pressure of the storage formation (Table 3.2).

The volume of the injected CO2 in a course of one year would be:

VCO2 =
MCO2

ρCO2

=
1.2×109 kg
625 kgm−3 = 1.92×106 m3, (6.1)

Assuming the cylindrical shape for the CO2 plume (Figure 6.1), and the fact that CO2 only

occupies 40 % of the pore space, and the pore space in this case is 18 % of the rock, we have:

VPlume =
VCO2

φ ×SCO2

=
1.92×106 m3

0.18× 0.4
= 2.67×107 m3, (6.2)

with φ being the porosity of the rock, and SCO2 the saturation of CO2. The volume of the

cylindrical plume with the radius of R and height of h is:

VPlume = πR2h, (6.3)

then the the radius of the plume is:

R =

√
VPlume

πh
=

√
2.67×107 m3

π(50 m)
≈ 400m, (6.4)
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Figure 6.1: Cylindrical shape considered for the CO2 plume for the monitor model (left). The
height of the cylinder is equal to the thickness of the BCS. The cylinder will appear as a block
in the 2D model (right)

where, the height of the plume was considered to be equal to the thickness of the BCS. The

plume with a radius of 400 meters and a height of 50 meters was then added to the BCS in

the monitor scenario. The acoustic impedance model of the monitor scenario is shown in Fig-

ure 6.2.b. The cool blue color of the plume indicates that, the impedance of the CO2 plume is

smaller than that of the BCS outside the plume. This decrease leads to a change in the reflection

coefficients from the top and the base of the plume, along with a time delay for the reflection

below the plume. All these changes lead to a difference between the baseline and monitor

seismic sections which is even more visible after subtracting the sections. By this subtraction,

all reflections that were unchanged after injection will be removed, and the residual is due to

injection of CO2.

6.4 Numerical modeling and discussion

In order to accomplish the time-lapse modeling, synthetic seismic sections were created for

both baseline and monitor scenarios. This was done by generating 105 shot gathers with a shot

interval of 20 m and receiver interval of 10 m. The shots and the receivers were located at

the same depth, at 300 m below the surface. For each scenario, all the generated shot gathers

were migrated separately using an Kirchhoff migration algorithm from the CREWES MATLAB
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Figure 6.2: a) Acoustic impedance models for a) baseline and b) monitor scenarios. The warmer
colors show higher impedance values. The blue color of the CO2 plume in the monitor model
indicates the decrease in the BCS impedance after injecting CO2.

toolbox (Margrave, 2006) and were stacked to generate the seismic sections. The grid size and

time interval used for the numerical modeling were 4 m and 0.2 ms, respectively. The thickness

of the PML boundary was chosen to be 100 m in order to effectively avoid the numerical artifacts

from the boundaries.

Figure 6.3.a-b show the generated seismic sections for both baseline and monitor scenarios

using the poroelastic algorithm. It is noticed that injection of CO2 has caused an increase in the

reflection magnitudes from the top and bottom of the plume. The reflection from the top of the

BCS has changed from a small negative reflection to a slightly larger negative reflection. More-

over, the reflection from the bottom of the plume has increased in magnitude. This reflection

has also undergone a time shift due to the lower velocity of BCS after injection. The time shift

was calculated from the cross correlation of the baseline and monitor traces and was equal to

1.7 ms. The amount of the time shift is affected by the thickness of the plume and the velocity

change in the BCS. The longer distance that the wave travels through the plume, the more time
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delay it will have. The time-lapse effect could be noticed more effectively when the monitor

section is subtracted from the baseline section. Figure 6.3.c shows the difference section after

subtracting the monitor section from the baseline section. The effect of the plume is more visi-

ble in this section since other reflections that are not affected by the injection are canceled out.

The lateral extension of the plume as well as the top of the plume could be determined from the

difference section.

One of the objectives of this dissertation was to compare the output of the poroelastic algo-

rithm with an elastic one. Therefore, an elastic time-lapse study was also carried out by setting

the fluid properties, as well as the porosity equal to zero in the poroelastic algorithm. The same

models were used to generate synthetic sections in an elastic algorithm. For this purpose only

the density, the P-wave velocity, and the S-wave velocity of the saturated rock were needed. For

BCS, the properties ρsat ,VP, and VS were taken from Table 3.3 for both baseline and monitor

scenarios. For the rest of the layers, same properties defined in the the previous models (listed in

Table 6.1) were used because they were already assumed to be elastic. The generated synthetic

sections from the elastic modeling are shown in Figure 6.4. The effect of CO2 injection on the

reflections and the travel times in this case is similar to the one in the poroelastic case. However,

it appears that the reflection from the top of BCS is weaker compared to the poroelastic case.

In Figure 6.5.a-b, selected traces from the synthetic sections from both elastic and poroelas-

tic cases are plotted. All traces belong to position X=1240 m that is almost the middle of the

sections. In both cases the reflection from the top of the plume has become slightly larger in

magnitude due to change in the properties of the plume. Furthermore, the reflection from the

base of the plume is larger in monitor scenarios and has also delayed 1.9 ms in time. The mag-

nitudes of the residual traces in both cases are comparable with the amplitudes of the baseline

and scenario traces. This leads to the conclusion that, the time-lapse effect caused by the CO2

injected in a course of one year in the Quest project will likely be large enough to be detected

in the seismic data. However, this conclusion is based on our numerical modeling with a simple
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model, and is free of noise. Therefore, it is necessary that the data have good quality and a high

signal-to-noise ratio in order to yield results similar to our numerical results.

Figure 6.6 shows the same traces plotted separately for each scenario in order to compare

the poroelastic algorithm with the elastic one. The reflection from the base of the plume in the

elastic case is larger in magnitude than the one in the poroelastic case. This could be due to

loss of energy in the poroelastic medium that was discussed in this thesis earlier. Moreover,

the time-lapse residual traces for both cases are plotted in Figure 6.6.c. It is also noticed that,

the time-lapse residual in the elastic case is larger in magnitude than the one in the poroelastic

case. This difference may not be significant enough to confirm the poroelastic algorithm as a

better solution for modeling. However, it needs to be noted that, in our model, only the BCS

layer was considered to be poroelastic and the rest of the layers were elastic. It is expected

that in the cases with multiple poroelastic layers, more energy will be lost due to poroelastic

effect. The comparison between the two algorithms also confirms that the elastic algorithm

overestimates the time lapse residual caused by the CO2 injection. Amplitudes are important

in most geophysical applications, including time-lapse studies. The poroelastic approach helps

us to perform more accurate modeling, especially for cases in which the pore fluid is changing

through time.

6.5 Summary

The developed poroelastic finite-difference program was successfully used to carry out a time-

lapse model-based numerical modeling for the Quest project. Synthetic seismic sections were

generated for baseline and monitor scenarios and compared in terms of changes in reflection

magnitudes and also the time shift resulted from the injection of CO2. The lateral extent of the

CO2 plume was observed in the difference section as well as the top of the plume. Furthermore,

a comparison was done between the elastic and poroelastic cases, and the results revealed the

energy loss in the poroelastic algorithm which is not observed in the elastic modeling.
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Figure 6.3: Synthetic seismic sections generated using the poroelastic algorithm for the baseline
(a) and the monitor(b) scenarios. The changes in the reflections and also the time shift in the
monitor section are due to the injection of CO2. The difference section is shown in (c) and
is created by subtracting (b) from (a). The top and the base of the plume are observed in the
difference section as a result of the change in the physical properties of the BCS
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Figure 6.4: Synthetic seismic sections generated using an elastic algorithm for the baseline
(a) and the monitor(b) scenarios. The changes in the reflections and also the time shift in the
monitor section are due to the injection of CO2. The difference section is shown in (c) and is
created by subtracting (b) from (a).
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Figure 6.5: a) Extracted traces from the sections in Figure 6.3 at the location of 1240 m, and
b) Extracted traces from the sections in Figure 6.4 at the same location. The traces are shown
in blue for baseline scenario, red for monitor scenario and black for the difference of the two
scenarios.
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These are the same traces in Figure 6.5, but plotted separately for the two scenarios and also the
time-lapse difference. 89



Chapter 7

Conclusions and Future Work

7.1 Conclusions

Based on the results presented in this dissertation the following conclusions can be made:

• The Basal Cambrian Sands (BCS), at the depth of approximately 2 km is a suitable aquifer

for Carbon Capture and Storage purpose. This saline aquifer is overlaid by multiple seals

and baffles that prevent the potential upward migration of the injected CO2. In terms of

porosity and permeability, the BCS qualifies as an ideal candidate for injection, since the

storage formation needs to have relatively high porosity and permeabilities.

• The Gassmann’s fluid substitution modeling results showed that, for 20 to 40 % of CO2

saturation in the pore fluid of the Basal Cambrian Sands(BCS), there will be about 5-6%

decrease in the P-wave velocity and 1.5% increase in S-wave velocity. The decrease in

the P-wave velocity is essential in the monitoring of the injected CO2.

• The primary objective of this dissertation was to develop a finite-difference modeling

program for the fluid saturated media. This was successfully done using the staggered-

grid discretization method and the wave equations in the poroelastic media (Biot’s theory).

The program is developed for the 2D case and based on the velocity-stress formulation.

Snapshots for two basic models were generated to verify that the code could properly

generate the reflections, transmissions and also wave mode conversions.

• One important aspect of the wave propagation in poroelastic media is the fluid induced

slow P-wave. This wave was modeled with the developed program for a fluid with b = 0.

It was also shown that, by increasing the value of the factor b, the slow P-wave becomes
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diffusive and therefore is not detected as a traveling wave. This is in complete agreement

with the theory. Based on a comparison between the fast P-wave amplitude in two cases

of zero and nonzero b factor, it was concluded that the energy loss in fluid saturated media

is more due to the wave partitioning of the wave than to only the fluid viscosity.

• The perfectly matched layer(PML) method was used in order to eliminate the numeri-

cal reflections from the grid boundaries. This method effectively absorbed the outgoing

waves, using only 20 grid nodes as the boundary region.

• The stability analysis was carried out for the developed algorithm and it was observed that

with nonzero b factor, the algorithm is less stable than with zero b factor. We believe that

the presence of the diffusive slow P-wave in the case of nonzero b factor leads to unstable

results.

• A time-lapse numerical modeling for the Quest project was carried out using the devel-

oped program. The purpose was to investigate the feasibility of the seismic monitoring of

the CO2 for this project as well as the performance of the poroelastic modeling for such

a project. The modeling results showed that the shape and the depth of the CO2 plume

could be qualitatively determined in the seismic data. However, the results were obtained

from noise-free numerical modeling, therefore this conclusion should be apply to high

quality seismic data.

• Finally, a comparison between the traces from the poroelastic time-lapse study and the

equivalent traces from an elastic case was performed. It was noticed that in the poroelastic

case there is energy missing due to the wave partitioning to the slow P-wave. Therefore the

reflection amplitudes in the poroelastic case are slightly smaller than those in the elastic

case. As in the poroelastic monitor model only the BCS was assumed to be poroelastic, it

is expected that in a case with more poroelastic layers, more energy is lost due to the wave

conversions. This is important in time-lapse feasibility analysis for the Carbon Capture
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and Storage projects. Therefore, using the poroelastic algorithm, more realistic synthetic

data can be modeled.

7.2 Future Work

Here are some challenges that I have encountered in this research and also suggestions for future

work:

• Lack of information on fluid properties of the subsurface was one of the main challenges

in this work. Most of the layers in the models defined for the time-lapse simulations

were assumed to be elastic. The only poroelastic layer was the BCS, the target injection

formation in the Quest project. Even for this formation, the fluid properties were roughly

estimated using the temperature and pressure at the depth of the formation. However,

although the only poroelastic layer (BCS) had a thickness of only 50 meters, the difference

between the elastic and poroelastic medium was relatively considerable. Therefore, it is

suggested that the algorithm should be tested for the models with more poroelastic layers

in order to investigate the amount of the energy loss caused by the poroelastic effect.

• The stability of the algorithm decreases by considering the nonzero fluid viscosity (b 6= 0).

The reason is thought to be the diffusive slow P-wave mode which is due to presence of

the factor b. On the other hand, the assumption of zero fluid viscosity (b = 0) is unreal

and generates several converted modes that do not exist in the real medium. In this case,

the generated synthetic sections would suffer from the artifacts caused by these waves,

and therefore the zero viscosity assumption is not a good option for modeling. A more

detailed stability analysis is needed to be done in order to set up a general stability criteria

for this algorithm.

• A quantitative analysis of the reflection and transmission coefficients in the poroelastic

media could be done in a future work. Furthermore, the Amplitude Versus Offset (AVO)
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of the poroelastic media could be looked into, and the results from the theory can be

compared with the simulated data from the developed program.

• The developed modeling algorithm could be used for Full Waveform Inversion (FWI).

In this process a set of data is generated for an initial model using the finite difference

algorithm and the synthetic data are compared with the available real data. The model

parameters are then updated based on the difference between the modeled and the real

data and the process is repeated until the misfit is minimized. However, due to coupling of

some of the parameters, the inversion problem becomes complicated in poroelastic media.

In cases such as CO2 sequestration, since only the fluid content changes through time, the

inversion problem can be simplified and performed to calculate some fluid properties (De

Barros et al., 2010). More work still needs to be done in the field of FWI specially in

complicated media such as poroelastic media.

• The Biot’s equations can be compared with the diffusive-viscous theory suggested by Ko-

rneev et al. (2004) that describes the frequency dependency of the reflection coefficients

in a fluid saturated media. An interesting possibility yet to be investigated is to use this

theory instead of Biot’s specially for AVO-AVA analysis (Zhao et al., 2014).

• This program can be used in many different cases for modeling purposes. For example,

in cases that the seperate patches of fluid exist in the reservoir rock. In that case, the wave

traveling through several patches of fluid results in more fluid related energy loss. There-

fore, the poroelastic algorithm will be a proper modeling algorithm for such a medium.
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Appendix A

Matlab Code

• Poro2D function

function Poro2D (Modeltype,dx,dt,freq,shotx,shotz,shotspacing,numshot,...

xmax,totaldepth,tmax,bound,recz,numsnap)

%Modeltype: 1=Quest Baseline %4=Quest Monitor %3=2 layer model ;

%dx=grid size;

%dt=time step

%freq=dominant frequency;

% shotx= x location of first shot;

% shot z= depth of the first sot;

% shotspacing= shot spacing;

% numshot= number of shots;

% xmax= size of the model

% totaldepth= the depth of model if modeltype==3;

% tmax= total time of computation;

% bound= thickness of PML boundary ;

% recz=depth of the receivers;

% numsnap= number of snapshots to be displayed;

tal=round(tmax/dt);

len=tal/numsnap;

lp=round(bound/dx);

[Txxn,Tzzn,Sn,Txzn,sourcez,w,rec,draft,nz,X,Z]=...

gridit(0,xmax,dx,shotz,recz,dt,freq,0);

[Vpc,VS,phof1,rhos1,phi1,Kmin1,KF1,etta1,kappa1,depths,varg]=...

PProperties2(Modeltype,totaldepth);

[Vp,Vs,rhof,rhos,phi,Kmin,KF,eta,kapa]=...

PModel(Vpc,VS,phof1,rhos1,phi1,Kmin1,KF1,etta1,...

kappa1,depths,draft,dx,varg);

[A, B, C,lamdac, MM, mu, b, alpha,rho]=...

Pceoffi(Vp,Vs,rhof,rhos,phi,Kmin,KF,eta,kapa,draft);

tl=length(w);

I=draft;I(:,:)=1;

ax=draft;az=draft;

for iz=1:bound

ax(:,iz)=(25.5*Vp(:,iz)/((bound*dx)^3)).*(((bound-iz)*dx).^2);

ax(:,nz+3-bound+iz:end)=(25.5*Vp(:,nz+...

3-bound+iz:end)/((bound*dx)^3)).*((iz*dx).^2);

az(iz,:)=(25.5*Vp(iz,:)/((bound*dx)^3)).*(((bound-iz)*dx).^2);

az(nz+3-bound+iz:end,:)=(25.5*Vp(nz+...
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3-bound+iz:end,:)/((bound*dx)^3)).*((iz*dx).^2);

end

for io=1:5

ax=smooth2a(ax,4,4);

az=smooth2a(az,4,4);

end

Vxnegx=draft; Vxnegz=draft; Vznegx=draft; Vznegz=draft;Vzpox=draft;

Wxpox=draft; Wxpoz=draft; Wzpox=draft; Wzpoz=draft; ff=0;

Txxnx=draft; Txxnz=draft; Tzznx=draft; Tzznz=draft; Txznx=draft;

Wxnegx=draft; Wxnegz=draft; Wznegx=draft; Wznegz=draft;

Snx=draft; Snz=draft; Txznz=draft;

for si=0:numshot-1

fs=(shotx+si*shotspacing);

sourcex=round(fs/dx);

for h=1:tal

if h<tl

pphi=phi(sourcez,sourcez);

init=draft;

init(sourcez-1:sourcez,sourcex-1:sourcex)=w(1+h,1)*(1-pphi);

Txxn=init+Txxn;

Tzzn=init+Tzzn;

Sn=init*(pphi/(1-pphi))+Sn;

end

G1=ODdxt(Sn,dx);G2=ODdxt(Txxn,dx);G3=ODdz(Txzn,dx);

G4=ODdzt(Sn,dx);G5=ODdx(Txzn,dx);G6=ODdzt(Tzzn,dx);

Vxpox=(I-(ax*dt)).*Vxnegx+((-B.*G1)+(A.*(G2))-(B.*b.*Wxnegx))*dt;

Vxpoz=(I-(az*dt)).*Vxnegz+((A.*(G3))-(B.*b.*Wxnegz))*dt;

Vzpox=(I-(ax*dt)).*Vznegx+(A.*G5-(B.*b.*Wznegx))*dt;

Vzpoz=(I-(az*dt)).*Vznegz+(-B.*G4+A.*G6-(B.*b.*Wznegz))*dt;

Wxpox=(I-(ax*dt)).*Wxnegx+(C.*G1+B.*G2+(C.*b.*Wxnegx))*dt;

Wxpoz=(I-(az*dt)).*Wxnegz+(B.*G3+(C.*b.*Wxnegz))*dt;

Wzpox=(I-(ax*dt)).*Wznegx+((B.*G5)+(C.*b.*Wznegx))*dt;

Wzpoz=(I-(az*dt)).*Wznegz+(C.*G4+B.*G6+(C.*b.*Wznegz))*dt;

Vxpo=Vxpoz+Vxpox;

Vzpo=Vzpoz+Vzpox;

Wxpo=Wxpoz+Wxpox;

Wzpo=Wzpoz+Wzpox;

D1=ODdx(Vxpo,dx);D3=ODdz(Vzpo,dx);D4=ODdx(Wxpo,dx);D5=ODdz(Wzpo,dx);

E1=ODdxt(Vzpo,dx); E2=ODdzt(Vxpo,dx);

Txxn1x=(I-(ax*dt)).*Txxnx+(2*(mu.*D1)+(lamdac.*(D1))+((alpha.*MM).*(D4)))*dt;

Txxn1z=(I-(az*dt)).*Txxnz+((lamdac.*D3)+(alpha.*MM.*D5))*dt;

Tzzn1x=(I-(ax*dt)).*Tzznx+((lamdac.*D1)+(alpha.*MM.*D4))*dt;

Tzzn1z=(I-(az*dt)).*Tzznz+((2*mu.*D3)+(lamdac.*D3)+(alpha.*MM.*D5))*dt;
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Txzn1x=(I-(ax*dt)).*Txznx+(mu.*E1)*dt;

Txzn1z=(I-(az*dt)).*Txznz+(mu.*E2)*dt;

Sn1x=(I-(ax*dt)).*Snx-((alpha.*MM.*D1)+(MM.*D4))*dt;

Sn1z=(I-(az*dt)).*Snz-((alpha.*MM.*D3)+(MM.*D5))*dt;

shotvx(h,:)=Vxpo(rec,:);

shotvz(h,:)=Vzpo(rec,:);

Txxnx=Txxn1x; Txxnz=Txxn1z; Tzznx=Tzzn1x; Txxn=Txxnz+Txxnx;

Tzznz=Tzzn1z; Txznx=Txzn1x; Txznz=Txzn1z;Tzzn=Tzznz+Tzznx;

Vxnegx=Vxpox; Vxnegz=Vxpoz; Vznegx=Vzpox;Vznegz=Vzpoz;

Wxnegx=Wxpox; Wxnegz=Wxpoz;Wznegx=Wzpox;Wznegz=Wzpoz;

Txzn=Txznz+Txznx;Snx=Sn1x; Snz=Sn1z;Sn=Snx+Snz;

if numsnap~=0

if mod(h,len)==0

imagesc(X,Z,Vzpo);colormap(’copper’);

drawnow

end; end;end

if Modeltype==1

f = [ ’Baseline’, num2str(fs), ’.mat’ ];

save(f,’shotvz’,’shotvx’,’dt’,’dx’,’Vp’)

else if Modeltype==4

f = [ ’Monitor’, num2str(fs), ’.mat’ ];

save(f,’shotvz’,’shotvx’,’dt’,’dx’,’Vp’)

end;end;

Vxnegx=draft; Vxnegz=draft; Vznegx=draft; Vznegz=draft;

Txxnx=draft; Txxnz=draft; Tzznx=draft; Tzznz=draft; Txznx=draft;

Wxnegx=draft; Wxnegz=draft; Wznegx=draft; Wznegz=draft; Txznz=draft;

Snx=draft; Snz=draft; Sn=draft; Txxn=draft;Tzzn=draft;Txzn=draft;

end

• gridit function

function[Txxn,Tzzn,Sn,Txzn,sourcez,w,rec,draft,nz,X,Z]=...

gridit(vargin,xmax,dx,sz,recz,dtsamp,f,wavetype)

zmax=xmax;

sx=round (xmax/2);

geo=recz;

Z=0:dx:xmax;

X=0:dx:zmax;

nz=round(zmax/dx);nx=round(xmax/dx);

draft=zeros(nz+2,nx+2);

if wavetype==0

[w,tw]=ricker(dtsamp,f, 0.064);%hold on;plot(tw,w)

else

[w,tw]=wavemin(dtsamp,f, 0.064);

end
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sourcez=round(sz/dx);

rec=round(geo/dx);

Txxn=draft;Tzzn=draft;

Sn=draft;Txzn=draft;

• PProperties2 function

function [Vpc,Vs,rhof,rhos,phi,Kmin,KF,etta,kappa,depths,varg]=...

PProperties(vargin,depth1)

if vargin==4

disp(’poro monitor’)

Vpc = [3980 4000 4100 5800 3850];

Vs = [2380 2200 2350 3300 2365];

rhof=[0 0 0 0 0];

rhos = [2600 2550 2650 2650 2650];

rhof=[0 0 1230 0 1050];

rhos = [2600 2600 2600 2600 2600];

phi = [0.00 0.00 0.18 0.00 0.18];

Kmin =[43.5*10^9 43.5*10^9 43.5*10^9 43.5*10^9 43.5*10^9];

KF=[0 0 3.05*10^9 0 0.254*10^9];

etta =[0 0 10^-5 0 10^-5];

kappa = [10^-12 10^-12 10^-12 10^-12 10^-12];

depths = [1700 2000 2050];

varg=5;

else if vargin==1

disp(’poro baseline’)

Vpc = [3980 4000 4100 5800];

Vs = [2380 2200 2350 3300];

rhof=[0 0 1230 0 ];

rhos = [2600 2600 2600 2600];

phi = [0 0 0.18 0 ];

Kmin =[43.5*10^9 43.5*10^9 43.5*10^9 43.5*10^9 ];

KF=[0 0 3.05*10^9 0];

etta =[0 0 10^-5 0];

kappa = [10^-12 10^-12 10^-12 10^-12 ];

depths = [1700 2000 2050];

varg=1;

else if vargin==3

disp(’ two layer poroelastic’)

Vpc = [3850 4100];

Vs = [2365 2350];

rhof=[1050 1230];

rhos = [2600 2600];

phi = [0.18 0.18];

Kmin =[43.5*10^9 43.5*10^9];
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KF=[0.254*10^9 3.05*10^9];

etta =[ 10^-5 10^-5];

kappa = [10^-12 10^-12];

depths = [depth1];

varg=1;

end;end;end;

• PModel function

function [Vp,Vs,rhof,rhos,phi,Kmin,KF,etta,kappa]=PModel(PVel,SVel,...

FluidDensity,SolidDensity,phi1,Kmin1,KF1,etta1,kappa1,depths,draft,dx,varg)

if varg==5 %block model for monitor scenario

d=length(depths);

dp=round(depths/dx);

Vp=draft; Vs=draft; rhof=draft;

rhos=draft; phi=draft; Kmin=draft;

KF=draft; etta=draft; kappa=draft;

z=1;[piz,pix]=size(draft);

for j=1:d

kj=dp(j) ;

Vp(z:kj,:)=PVel(j) ;

Vs(z:kj,:)=SVel(j) ;

rhof(z:kj,:)=FluidDensity(j) ;

rhos(z:kj,:)=SolidDensity(j) ;

phi(z:kj,:)=phi1(j) ;

Kmin(z:kj,:)=Kmin1(j) ;

KF(z:kj,:)=KF1(j) ;

etta(z:kj,:)=etta1(j) ;

kappa(z:kj,:)=kappa1(j) ;

z=kj+1;

end

Vp(z:end,:)=PVel(j+1) ;

Vs(z:end,:)=SVel(j+1) ;

rhof(z:end,:)=FluidDensity(j+1) ;

rhos(z:end,:)=SolidDensity(j+1) ;

phi(z:end,:)=phi1(j+1) ;

Kmin(z:end,:)=Kmin1(j+1) ;

KF(z:end,:)=KF1(j+1) ;

etta(z:end,:)=etta1(j+1) ;

kappa(z:end,:)=kappa1(j+1) ;

mx1=round(piz/2-400/dx); mx2=round(pix/2+400/dx);

mz1=dp(2)+1;mz2=dp(3);

Vp(mz1:mz2,mx1:mx2)=PVel(d+2) ;

Vs(mz1:mz2,mx1:mx2)=SVel(d+2) ;

rhof(mz1:mz2,mx1:mx2)=FluidDensity(d+2) ;
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rhos(mz1:mz2,mx1:mx2)=SolidDensity(d+2) ;

phi(mz1:mz2,mx1:mx2)=phi1(d+2) ;

Kmin(mz1:mz2,mx1:mx2)=Kmin1(d+2) ;

KF(mz1:mz2,mx1:mx2)=KF1(d+2) ;

etta(mz1:mz2,mx1:mx2)=etta1(d+2) ;

kappa(mz1:mz2,mx1:mx2)=kappa1(d+2) ;

else %% layeered model

d=length(depths);

dp=round(depths/dx);

Vp=draft; Vs=draft; rhof=draft;

rhos=draft; phi=draft; Kmin=draft;

KF=draft; etta=draft; kappa=draft;

z=1;

for j=1:d

kj=dp(j) ;

Vp(z:kj,:)=PVel(j) ;

Vs(z:kj,:)=SVel(j) ;

rhof(z:kj,:)=FluidDensity(j) ;

rhos(z:kj,:)=SolidDensity(j) ;

phi(z:kj,:)=phi1(j) ;

Kmin(z:kj,:)=Kmin1(j) ;

KF(z:kj,:)=KF1(j) ;

etta(z:kj,:)=etta1(j) ;

kappa(z:kj,:)=kappa1(j) ;

z=kj+1;

end

Vp(z:end,:)=PVel(j+1) ;

Vs(z:end,:)=SVel(j+1) ;

rhof(z:end,:)=FluidDensity(j+1) ;

rhos(z:end,:)=SolidDensity(j+1) ;

phi(z:end,:)=phi1(j+1) ;

Kmin(z:end,:)=Kmin1(j+1) ;

KF(z:end,:)=KF1(j+1) ;

etta(z:end,:)=etta1(j+1) ;

kappa(z:end,:)=kappa1(j+1) ;

end

• Pceoffi function

function[A, B, C, lamdac, MM, mus, b, alpha,rho]=...

Pceoffi(Vp,Vs,rhof,rhos,phi,Kmin,KF,eta,kapa,draft,lim,dp)

I=draft;I(:,:)=1;

rho1=(I-phi).*rhos; rho2=phi.*rhof;

rho=rho1+rho2;
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mus=((Vs.^2).*rho);

Ksat=((rho.*(Vp.^2))-(4*mus./3));

BB=((phi.*Kmin)./KF);AA=(BB+(I-phi));

CC=(Ksat./Kmin)-(I+phi);

KDry=((Ksat.*AA)-Kmin)./(BB+CC);

alpha=1-(KDry./Kmin);

MM=((phi./KF)+((alpha-phi)./Kmin)).^-1;Tur=1;

mm=(Tur*rhof)./phi;

lamdac=(rho.*(Vp.^2)-(2*mus));

DE=(mm.*rho)-(rhof.^2);

b=(eta)./kapa;

A=(1./(rho-(phi.*rhof)));

B=-(rhof)./DE;

C=-(rho./DE);

h2=find(isnan(B)); B(h2)=0;

h3=find(isnan(C));C(h3)=0;

h4=find(isnan(A));A(h4)=0;

h7=find(isnan(b)); b(h7)=0;

h8=find(isnan(MM)); MM(h8)=0;

h9=find(isnan(alpha)); alpha(h9)=0;

• ODdx function

function [output]= ODdx(input,delx)

[nrows,ncolumns]=size(input);

input2=zeros(nrows+4,ncolumns+4);

input2(3:nrows+2,3:ncolumns+2)=input;

clear input

xm=3:nrows+2;zm=3:ncolumns+2;

s=input2;

ot =27*(s(xm,zm+1)-s(xm,zm))-(s(xm,zm+2)-s(xm,zm-1));

output=ot/(24*delx);

• ODdxt function

function [output]= ODdxt(input,delx)

[nrows,ncolumns]=size(input);

input2=zeros(nrows+4,ncolumns+4);

input2(3:nrows+2,3:ncolumns+2)=input;

clear input

xm=3:nrows+2;zm=3:ncolumns+2;

s=input2;

ot =27*(s(xm,zm)-s(xm,zm-1))-(s(xm,zm+1)-s(xm,zm-2));

output=ot/(24*delx);

104



• ODdz function

function [output]= ODdz(input,delx)

[nrows,ncolumns]=size(input);

input2=zeros(nrows+4,ncolumns+4);

input2(3:nrows+2,3:ncolumns+2)=input;

clear input

xm=3:nrows+2;zm=3:ncolumns+2;

s=input2;

ot =27*(s(xm+1,zm)-s(xm,zm))-(s(xm+2,zm)-s(xm-1,zm));

output=ot/(24*delx);

• ODdzt function

function [output]= ODdzt(input,delx)

[nrows,ncolumns]=size(input);

input2=zeros(nrows+4,ncolumns+4);

input2(3:nrows+2,3:ncolumns+2)=input;

clear input

xm=3:nrows+2;zm=3:ncolumns+2;

s=input2;

ot =27*(s(xm,zm)-s(xm-1,zm))-(s(xm+1,zm)-s(xm-2,zm));

output=ot/(24*delx);
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