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Abstract

Amplitude versus offset information is a key feature to seismic reservoir characterization. There-
fore amplitude preserving migration was developed to obtain this information from seismic reflection
data. For complex 3-D media, however, this process is computationally expensive. In this paper
we present an efficient traveltime based strategy for amplitude preserving migration of the Kirchhoff
type. Its foundation is the generation of first and later arrival traveltime tables using a wavefront-
oriented ray-tracing technique and a generalized moveout relation for 3-D heterogeneous media. All
required quantities for the amplitude preserving migration are computed from coarse gridded travel-
time tables. The migration includes the interpolation from the coarse gridded input traveltimes onto
the fine migration grid, the computation of amplitude preserving weight functions, and, optionally,
the evaluation of an optimized migration aperture. Since ray tracing is employed for the traveltime
computation the input velocity model needs to be smooth, i.e., spatial velocity variations below the
wavelength of the considered reflection signals are removed. Numerical examples on simple generic
models validate the technique and an application to the Marmousi model demonstrates its potential
to complex media. The major advantages of the traveltime based strategy consist of its computa-
tional efficiency by maintaining sufficient accuracy. Considerable savings in storage space (105 and
more for 3-D data) are achieved. The computational time for the stack is substantially reduced (up
to 90% in 3-D) if the optimized migration aperture is used.

Introduction

The exploration industry faces targets of ever increasing complexity since the simple reservoirs are al-
ready found and exploited. Pre-stack depth migration (PSDM) became a standard tool to image the
subsurface with seismic reflection data from 3-D complex media. Most currently existing implementa-
tions are based on a Kirchhoff type migration, which is also considered in this contribution. In Kirchhoff
type migration, the subsurface is represented on a reasonably discretized migration grid, where every
grid point corresponds to a point scatterer. The discretization interval depends on the resolution of the
reflection data under consideration, i.e., the discretization step should be far below the dimension of the
first Fresnel volume. This usually leads to a spacing of 5-25 m for the migration grid (also called fine

grid in this paper). For each scatterer of this discretized model diffraction traveltimes are computed
for sources and receivers at the Earth’s surface. The amplitudes of the recorded seismic traces are then
stacked along the diffraction time curves. Only if the scatterer corresponds to a reflector a non-vanishing
contribution is obtained in the stacked section. This contribution appears at the correct spatial location
in the migrated image, if the diffraction traveltimes are computed for the correct velocity model (for a
good introduction to Kirchhoff type migration please see Bleistein 1999). The velocity model usually
corresponds to a smooth velocity distribution without discontinuous changes.
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In exploration the goal is not just to image the subsurface but also to characterize the reservoir, i.e.,
its lithology, fluid content, porosity, and others. Shear properties are a key feature in this investigation.
Amplitude versus offset (AVO) studies turned out to be a powerful tool to obtain estimates on the
shear properties of the reservoir without measuring shear waves directly (most industry data are vertical
component P-wave observations). For AVO investigations the reflection coefficient has to be recovered
from the seismic data. Amplitude preserving migration is a special implementation of Kirchhoff type
migration where the amplitude of the migrated depth image corresponds to the reflection coefficient
of the reflector under consideration (if transmission losses at interfaces above the target reflector are
properly applied). In this process the geometrical spreading in the seismic data is removed by applying
an appropriate weight function during the stacking process (for an introduction to amplitude preserving
migration please see Schleicher et al. 1993).

Thus, amplitude preserving migration (APM) is separated into three major tasks: (1) the computa-
tion of diffraction traveltimes, (2) the determination of proper weight functions, and (3) the stacking of
the traces along the diffraction time surface. The summation stack is usually carried out over the whole
aperture of the experiment, which is a very time-consuming process. Thus, the computational costs
of the third task can be significantly reduced if only those traces are included in the stack that really
contribute. These traces define the size of an optimized migration aperture, which can be determined
using the method outlined in this paper. For the computation of traveltimes either Finite Difference
Eikonal solvers (FDES) or ray tracing is used. FDES (see, e.g., Vidale 1988, 1990) represent robust
and fast tools to compute first arrival traveltimes. The inability to compute later arrivals of triplicated
wavefronts is, however, a major drawback of these techniques Geoltrain and Brac (1993). Moreover, for
accuracy reasons FDES do not work on coarse grids but must use a discretization in the dimension of
the migration grid. To save storage space, especially in 3-D, diffraction traveltimes are usually stored
on coarse grids with discretizations of several ten to hundred meters. Therefore FDES traveltimes
need to be re-sampled to the coarse grid size for storage, i.e., a lot of computational effort is thrown
away. Traveltimes on the fine grid are obtained during migration by interpolation, usually of bi-linear
or tri-linear type. Therefore, APM actually consists of four major tasks: (1) computation of diffraction
traveltimes on coarse grids, (2) traveltime interpolation from coarse storage grids to the fine migration
grids, (3) computation of weight functions, and (4) the stacking process using the optimized migration
aperture.

Several implementations of ray tracing are available. The classical ray shooting Červený et al. 1977
propagates a single ray through the medium to the receiver by two-point ray tracing Červený and
Pšenč́ık (1984). Considering single rays usually leads to illumination problems, i.e., some grid points
are not hit by rays. Techniques of the wavefront construction (WFC) type Vinje et al. (1993); Ettrich
and Gajewski (1996); Lambaré et al. (1996); Bulant (1999); Coman and Gajewski (2001) propagate
several rays at the same time to forward a complete wavefront through the medium. The wavefront at
every time step should be sampled by a sufficient number of rays. In case of poor ray coverage (or poor
sampling of the wavefront) virtual sources are introduced on the wavefront and new rays are traced from
these positions. This leads to a sufficient illumination of the whole medium. Thus, WFC is better suited
for the computation of traveltime grids than ray shooting. The introduction of new rays, however, may
lead to inaccuracies since the initial conditions of these rays, i.e., coordinates of the virtual source on the
wavefront and slownesses, are interpolated from neighboring rays Bulant (1999); Coman and Gajewski
(2001). These errors increase if further rays have to be introduced since the information obtained from
the neighboring ray is already erroneous.

In this paper we present innovations related to all four major tasks for APM by combining a ray
tracing procedure with a traveltime based strategy for the computation of migration weights. For
the computation of diffraction times we introduce the wavefront-oriented ray-tracing (WRT) technique
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which represents an alternative implementation of WFC. Here the new rays are not interpolated on the
wavefront but are computed directly from the source. Thus the accuracy of the ray tracing is main-
tained even for the newly introduced rays. We also present a new method to determine traveltimes
at grid points from the traveltimes of the closest wavefronts. The interpolation from the coarse grid
to the fine migration grid uses a new technique based on a hyperbolic expansion of traveltimes which
acknowledges the local curvature of the wavefront. Owing to this feature, this interpolation is superior
to the commonly used bi- or tri-linear interpolation. Moreover, since this method allows for the interpo-
lation of source positions, also a contribution to the computation of diffraction traveltimes is provided
by this technique. Finally, we introduce a new method to compute migration weights and optionally an
optimized migration aperture, which considerably reduces the computational time for the stack. Only
coarse gridded diffraction traveltimes are needed as input information for the method. This permits a
ray tracing in purely kinematic mode, since no dynamic ray tracing is required. These new techniques
are the essential ingredients of the traveltime based strategy for amplitude preserving migration.

In the next section the methods behind the four ingredients are described where we start with
the description of the wave front oriented ray tracing. After that we introduce a generalized moveout
formula for 3-D heterogeneous media and explain its application to traveltime interpolation and the
computation of migration weights. It also provides the foundation for the optimization of the migration
aperture. Numerical examples on simple models where analytical solutions exist are used to verify the
introduced methods and to visualize their strengths and weaknesses. Applications to the Marmousi
model illustrate the potential of the traveltime based strategy for complex models. The section on
smoothing of velocity models discusses the necessary requirements for the application of high frequency
methods and its relation to wave propagation in the real Earth. The Conclusion and Outlook section
ends the description of the traveltime based strategy for amplitude preserving migration.

Method

APM consists of four major tasks: computation of diffraction traveltimes on coarse grids, traveltime
interpolation from coarse grids to the fine migration grids, computation of weight functions, and opti-
mization of the migration aperture. In this paper we introduce innovations related to each of these four
tasks. The ingredients of the innovations are described in the following sections.

Wavefront Oriented Ray Tracing

As mentioned in the introduction the WFC methods are best suited for the computation of transmitted
(diffraction) traveltimes in complex models. Several implementations of WFC were published during
the last years (e.g., Vinje et al. 1993; Ettrich and Gajewski 1996; Lambaré et al. 1996; Vinje et al.
1996). They all have in common, that they interpolate new rays on the wavefront. This interpolation
procedure should increase the efficiency of the WFC method, but the interpolation introduces errors
Bulant (1999); Coman and Gajewski (2001). These errors may even increase if further rays need to be
included since traveltimes, slownesses and dynamic ray tracing results of neighbouring rays are already
erroneous.

To avoid these inaccuracies we suggest to trace the new ray directly from the source. The initial
direction of the new ray is given by the bisector of the angle between the neighbouring rays at the
source. Thus, the accuracy of ray tracing is maintained. This accuracy is controlled by the technique
used to solve the differential equations of the kinematic ray tracing system. We use a Runge-Kutta
procedure of 4th order. It may happen that the newly introduced ray does not hit the desired location.
For these situations, an iterative procedure is used to to find the appropriate position. In the examples
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presented below the simple averaging led the ray to the desired position in almost all cases and no
iterations were necessary. Variations of initial conditions at the source (i.e., take off angles of rays) may
be very small if strong divergence is present. It is therefore suggested to assign quantities related to
initial conditions in double precision. Since we have combined wavefront construction and single ray
shooting in this technique we call it wavefront-oriented ray tracing (WRT).

Extended and spatially localized low velocity bodies (like lenses) may lead to poor illumination using
our technique. If the spatial extension of a low velocity zone exceeds the dimension of a ray cell, classical
WFC techniques are applied (i.e., introduction of virtual sources and interpolation of initial conditions).
In 2-D a ray cell corresponds to the spatial region which is separated by two neighboring rays and two
neighboring wavefronts (in 3-D accordingly). The spatial separation of wavefronts is determined by
the time step used to integrate the kinematic ray tracing system. It should be chosen such that the
separation is smaller than the smallest spatial variation of the velocity model. A wavenumber analysis
and the smallest velocity present in the model under consideration provide the necessary insight to
properly choose the time step. Similar rules apply to the separation of rays of a ray cell. Their spatial
separation also should not exceed the smallest spatial variation of the velocity model. The above
mentioned issue of low velocity bodies is of minor concern for migration applications. For steep angle
reflections as used in exploration these zones are less critical than for wide angle reflections or refracted
waves which propagate in more horizontal directions. Steep angle reflections in many cases penetrate
low velocity zones whereas wide angle reflections or refracted waves travel around the low velocity body,
propagating in the high velocity areas around the low velocity body.

So far we have described how the continuous illumination is realized using the WRT technique.
The interpolation from the traveltimes available at the corners of the ray cells to the grid points of the
coarse traveltime grid is another important issue in any wavefront construction method. We suggest
the following procedure: To allow a high accuracy in this process the wavefront curvature is taken into
account. It is approximately determined by Finite Differences of the slownesses at the corners of the
ray cell similar to the procedure suggested in Gajewski and Pšenč́ık (1987). The slowness vectors are
obtained as a by-product of the solution of the kinematic ray tracing system. Then traveltimes from all
corner points to the grid point under consideration are computed using an expansion which is exact up
to second order (i.e., slope and curvature of the traveltime curve are considered). The final traveltime
at the grid point is then obtained by a weighted average of these traveltimes. More details on the WRT
technique are described in Coman and Gajewski (2001).

A Generalized Moveout Formula

In the previous section the WRT technique was introduced to compute traveltime tables on coarse grids.
This concludes the first of the four major tasks of APM. The three remaining tasks, the interpolation
to the fine migration grid and the determination of the weight functions and the optimum aperture
are both related to a generalized moveout formula. We expand the traveltime up to the second order.
Since we are inspired by traveltime hyperbolae in exploration seismics, we actually do not expand the
traveltime, τ , but the square of the traveltime, τ 2. For the 3-D case, the Taylor expansion has to be
carried out in six variables, namely, the three components of the source position vector, ŝ, and those
of the receiver position vector, ĝ, which in our case corresponds to the grid-point position vector. The
resulting hyperbolic traveltime expansion reads

τ2(ŝ, ĝ) = (τ0 − p̂>

0 ∆ŝ + q̂>

0 ∆ĝ)2 + τ0

(

−2 ∆ŝ>N̂ ∆ĝ

−∆ŝ>Ŝ ∆ŝ + ∆ĝ>
Ĝ ∆ĝ

)

+ O(3) (1)
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The coefficients in the above equation are the first and second derivatives of traveltimes. The first
order derivatives with respect to the source position yield the components of the slowness at the source,
pi0 . Similarly, qi0 are the components of the slowness vector at the receiver:

pi0 = − ∂τ

∂si

∣

∣

∣

∣

ŝ0,ĝ
0

, qi0 =
∂τ

∂gi

∣

∣

∣

∣

ŝ0,ĝ
0

. (2)

The second order derivatives with respect to source and receiver coordinates lead to the matrices Ŝ

and Ĝ, and the mixed second order derivative matrix N̂

Sij =− ∂2τ

∂si∂sj

∣

∣

∣

∣
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0
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Gij =
∂2τ
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∣

∣

∣

∣

ŝ0,ĝ
0

= Gji ,

Nij =− ∂2τ

∂si∂gj

∣

∣

∣

∣

ŝ0,ĝ
0

6= Nji (3)

Physically the expansion Eq. 1 corresponds to a local approximation of the traveltime curve by
a segment of a curve of second order, e.g., a hyperbola. Or, in other words, the wavefront is locally
approximated by a surface of second order, e.g., a sphere. Since the coefficients are expressed in terms
of traveltime derivatives the expansion applies to any 3-D heterogeneous model, including anisotropic
media, and any wave type.

Suppose that you know the coefficients involved in the expansion, then you already have an inter-
polation formula which is exact up to the second order. On the other hand, if a sufficient number of
traveltimes is available, the above equation can be solved for the coefficients. This was already indi-
cated by Bortfeld (1989) in connection with a parabolic traveltime expansion. Since a large number of
traveltimes to every grid point for many sources need to be available for the migration to determine the
diffraction time surfaces we can in fact solve for these coefficients. The number of coefficients in Eq. 1
can be reduced by using the eikonal equation Vanelle and Gajewski (2002b).

The coefficients are the key feature of the traveltime based strategy for APM. They are used for
the traveltime interpolation, for the computation of migration weights and for the estimation of the
optimized migration aperture. Eq. 1 represents the most general form of a moveout relation with an
accuracy up to second order. It can be considered as a generalization of the well known T 2−X2 method
to 3-D heterogeneous media Gajewski and Vanelle (2001). As for any expansion the accuracy of the
interpolated quantity decreases with the distance from the expansion point. The distances with respect
to the point of expansion are always small, because the determination of the coefficients of Eq. 1 is
strictly local (i.e., spacing of the coarse grid). This leads to a high accuracy of the coefficients (see
also the numerical examples below). The relation of the generalized moveout formula Eq. 1 to other
published moveout formulas, e.g., the Common Reflection Surface stack (CRS, Jäger et al. 2001; Zhang
et al. 2001) is discussed in Gajewski and Vanelle (2001) and Vanelle (2002). In the next sections we
present applications of the generalized moveout formula which are of importance to APM.

Traveltime Interpolation

It was already mentioned that, if the coefficients are known, Eq. 1 represents an appropriate relation to
interpolate traveltimes from the coarse traveltime grid to the fine migration grid. Explicit expressions
for the coefficients and a detailed investigation on their accuracy are presented in Vanelle (2002). If the
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coefficients are determined from the coarse input traveltime grid, the interpolation to the fine migration
grid is a straightforward application of Eq. 1. A more detailed description of the procedure and an error
analysis is given by Vanelle and Gajewski (2002b). In the next section the relation of the migration
weights of APM to the coefficients of Eq. 1 is presented. It is important to note, that Eq. 1 also allows
to interpolate for sources, which is considerably faster than the computation with FDES or WRT.

Migration Weights

The application of migration weights during the stacking process removes the geometrical spreading
from the reflection data. This is the key feature of APM to reconstruct the reflection coefficient. The
geometrical spreading and the migration weights can be expressed in terms of traveltime derivatives,
i.e., in terms of coefficients of the generalized moveout equation which we already determined for the
traveltime interpolation. The migration weights read:

W3D(ξ,M) =
1

v1

√
cosα1 cos α2

|det(N>

1 Σ + N
>

2 Γ)|
√

|detN1| |detN2|
e−i π

2
(κ1+κ2) . (4)

To construct the stacking surface we split the diffraction time into the traveltime from the source to the
image point M and that from the receiver to M . Quantities related to these two traveltime branches
are denoted by the indices 1 and 2 in Eq. 4, as, e.g., the matrices Ni . All involved quantities of Eq. 4
are known. The matrices Ni are obtained from the second-order mixed derivative matrices N̂i (obtained
from Eq. 1) by rotating the latter into the tangent plane of the candidate reflector at the image point.
The velocity v1 is that at the source point. The angle α1 is the emergence angle from the source and
α2 is the incidence angle at the receiver. Both angles are related to the slowness vectors, i.e. first
derivatives of traveltimes, and are also obtained from the coefficients of Eq. 1. The KMAH indices κ i

are provided by the WRT. The KMAH index is characteristic to each traveltime table for the phases of
a triplicated wavefront. Finally, the matrices Γ and Σ describe the measurement configuration of the
experiment, e.g., common shot. Thus, the weight function is computed from the very same coefficients
already used for the interpolation. No additional computational effort (except for the evaluation of
Eq. 4) is needed. To properly apply the migration weights a priori information on the structure under
investigation is required, i.e., reflector location and dip. This can be either derived from a previous
migration (e.g., an unweighted diffraction stack) or, for simpler media, from the velocity model used to
compute diffraction traveltimes. The a priori knowledge is not specific to the traveltime based strategy
of APM but a necessity to every APM. In the next section the optimized aperture is applied to further
reduce the computational effort of APM.

Optimized Aperture

Usually the weighted stack is carried out over the whole aperture of the experiment, i.e., the full spread
used during recording. It was, however, previously shown that only the traces constructively contribute
to the stack, where the diffraction time differs by less than the signal length from the traveltime of the
stationary ray Schleicher et al. (1997); Hubral et al. (1993). The locations in the recording surface where
the difference between diffraction and reflection traveltime equals the signal length define the optimum
migration aperture. Since this difference can be approximated in terms of the coefficients of Eq. 1,
the optimum aperture can be determined Vanelle and Gajewski (2002a). Again, only the coefficients
already determined for the traveltime interpolation are needed to obtain the aperture.

Similar to the application of the coefficients for the migration weights, a priori information is required
to determine the stationary reflection which forms the center of the optimized aperture. If the optimized
aperture is applied, considerable savings in CPU time are achieved since much less traces need to be
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Figure 1: Recovered reflection coefficients from noise-free data for a horizontal reflector. Dashed line:
analytic reflection coefficients. Solid line: recovered coefficients if the optimum aperture is used. Dotted
line: recovered coefficient if the whole recording spread is used. The curves for both apertures virtually
coincide. Despite boundary effects (peaks at 0.3 and 1.1km) caused by the limited extent of the spread
the differences between results are very small.

stacked. Optimized apertures are often in the order of a few hundred meters whereas the recording
spread is in the order of a few kilometers. Moreover, also the signal to noise ratio of the migrated image
is improved owing to not stacking amplitudes which do not contribute to the reflected signal. We will
now apply the traveltime based strategy to various models. First we will investigate a simple generic
model where analytic solutions to the involved quantities are available. This example serves to validate
the new strategy for traveltime based APM.

Numerical Example

In a first example we apply the traveltime based strategy to a simple 2-D model. It is a two layer model
separated by a horizontal interface. The P-wave velocity vp is 5 km/s in the first layer and 6 km/s
in the second layer. The vp/vs -ratio is

√
3 for both layers and the density ρ is evaluated using the

relation ρ = 1.7 + 0.2vp. For this model, traveltimes and their first and second spatial derivatives (i.e.,
the coefficients of Eq. 1) and all quantities required for APM with optimized aperture can be computed
analytically and compared to the results for coefficients determined from the coarse grid traveltime
tables. Ray synthetic seismograms were computed for a receiver line consisting of 300 equidistantly
positioned receivers with a spacing of 10m and the first receiver 10m away from the source. Synthetics
were generated using the SEIS package Červený and Pšenč́ık (1984).

For this section an amplitude preserving shot migration was carried out. Coarse grid analytic
traveltime tables with a spacing of 50m for each direction were used to determine the coefficients.
Diffraction surfaces were interpolated for a migration grid with a spacing of 2m in z-direction and 10m
in x-direction. Optimized aperture and migration weights were computed from the coefficients. The
reconstructed reflection coefficient is shown in Fig. 1 and compared to the analytically obtained results.

The amplitude versus offset behavior is successfully recovered by the migrated results as well as
the form of the source signal (not shown here). This applies to the migration using the full spread
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Figure 2: Marmousi model with smoothing applied. Wave numbers below 200m are removed. First
arrival isochrones for a source on top of the model at x=6km are also given.

and the optimized aperture. Please note, that the latter requires less CPU time since it stacks much
less traces (about 80% less) than for the full spread. If noise is present in the data, the migrated
image resulting from the optimized aperture also displays an improved S/N-ratio. The CPU savings
are even more important for 3-D media (more than 90% depending on the model, signal length, spread
length and reflector depth). Please note, that the optimized aperture determined from the coefficients
is an approximation to the exact optimum aperture. For steep dips the approximation may not cover
the range required to reconstruct the reflection coefficient but will nevertheless recover the AVO trend
Vanelle (2002); Vanelle and Gajewski (2002a).

The simple example has proved that the traveltime based strategy to APM is in fact able to recon-
struct the reflection coefficient. In the next example we will investigate a complex 2-D model where the
traveltimes need to be computed numerically by the above described WRT technique. Here, analytical
results are not available. The coefficients, however, can be determined in the same way as above and
traveltimes are interpolated from the coarse grid to the fine migration grid. These interpolated travel-
times are compared to directly computed fine grid traveltimes using the WRT technique in a parameter
setting for high accuracy. The errors are an indication for the performance of the traveltime based
strategy to APM in complex media since the very same coefficients used for the interpolation are also
used to compute migration weights and optimized aperture.

The Marmousi model Versteeg and Grau (1991) is shown in Fig. 2. Since the foundation of ex-
ploration seismics as well as the theory of APM is based on geometrical optics (i.e., high frequency
asymptotics) the model is smoothed such that spatial wave numbers of the velocity below 200m are
removed (for a more detailed discussion on smoothing see below in the section on smoothing). The filter
characteristic of the smoothing operator is shown in Fig. 3.

A spacing of 200m is used for each spatial direction of the coarse grid traveltime tables. The
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Figure 3: Impulse response of the low pass filter used to smooth the Marmousi model. The upper
boundary of the low pass wavenumber corresponds to 5km, i.e., spatial variations below 200m are
removed.

separation of shots at the surface is also 200m. Traveltimes are computed using the WRT technique on
the coarse grid as well as for the fine migration grid with a spacing of 20m. The data on the fine grid
serve as reference data.

The coefficients of a 2-D version of Eq. 1 are determined using the coarse grid traveltime tables.
They are then applied to interpolate traveltimes to the fine migration grid. The interpolated traveltimes
are compared to the reference traveltimes. The relative errors are shown in Fig. 4.

The overall performance of the interpolation is very satisfactory even close to the source, where the
wavefront curvature is strongest. In regions with strong wavefront curvature the hyperbolic interpolation
is far superior to the commonly used bi-linear interpolation. Please note, that in complex models,
strong curvature may occur even very far away from the source. A visual inspection of the isochrones
in Fig. 4, e.g., at about x=8km and z=1.5km, illustrates this statement. The largest errors are
correlated with kinks in the wavefronts. These kinks in first arrival traveltimes indicate the presence of
triplicated wavefronts. In these regions different seismic phases were mixed together when determining
the coefficients, leading to erroneous values. The inclusion of later arrivals overcomes this problems.
The WRT technique is able to compute first and later arrivals. The implementation of our current
program version to determine the coefficients, however, does not consider later arrivals yet.

It was mentioned above, that the technique presented in this paper allows to interpolate also for
sources. This is impractical with tri-linear interpolation, i.e., much more shots need to be computed.
The direct computation of shots is more time consuming than the hyperbolic interpolation: savings of
more than 85 % in CPU time per shot are possible. In Fig. 5 the relative error for the interpolation of
traveltimes for an interpolated source are displayed. The agreement of directly computed traveltimes
using the WRT technique and the interpolated traveltimes is satisfactory since the relative errors stay
far below 1% in most parts of the model except zones with kinks in the wavefronts (see above). Further
applications of traveltime interpolation to 3-D models are presented in Vanelle and Gajewski (2002b).

Fig. 6 shows the geometrical spreading computed from the coefficients of the hyperbolic expansion.
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Figure 4: Gray scaled relative errors of interpolated and reference traveltimes for the smoothed Mar-
mousi model. The overall errors are small. There is an obvious correlation of the error with “kinks” in
the isochrones (see text).
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Figure 5: Interpolation of traveltimes for a source position shifted 100m in x-direction. Relative errors
are given. The overall performance is similar to the interpolation of grid positions only (see Fig. 4).

As expected, the behavior of the spreading follows the curvature of the wavefront. The computation
of migration weights is carried out with the same coefficients as for the traveltime interpolation and
the determination of geometrical spreading. No reference solution was available for the Marmousi
model to estimate the errors of the method for the determination of geometrical spreading. We have,
however, computed geometrical spreading from traveltimes for models where an analytical solution
exists (homogeneous medium, constant velocity gradient model, see Vanelle and Gajewski 1999). The
resulting relative errors of the spreading for these models are of a magnitude of 0.05%. The computation
of migration weights is carried out with the same coefficients as the traveltime interpolation and the
determination of geometrical spreading. Therefore we expect similar accuracy for the determination of
the migration weights as for the spreading.

To apply high frequency (HF) techniques certain limitations apply. In order to satisfy the conditions
of applicability of HF methods Červený et al. (1977); Červený (2001) usually requires smoothing of the
models determined by velocity model building tools or obtained from velocity logs. Smoothing is often
considered to be harmful to imaging. Some considerations on smoothing are discussed in the following
section.

Some Comments on Smoothing

The foundation of applied seismics including exploration seismics is based on high frequency asymp-
totics. Seismic phases, traveltimes and rays serve as powerful tools to understand problems in reflection
seismics. Classical concepts like NMO, DMO, CMP- or CRS-stack and Kirchhoff migration are firmly
based on HF assumptions. This assumption also applies to the whole theory of amplitude preserving
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Figure 6: Geometrical spreading for the Marmousi model computed from the coefficients of the hyper-
bolic traveltime expansion.

migration. Also the imaging conditions of Finite Difference migration (often also called wave field mi-
gration) are based on the ray concept. Here the wavefield continuation is based on a one way wave
equation whereas the imaging condition relies on HF-methods. To apply any kind of HF method cer-
tain conditions of applicability must be satisfied Červený et al. (1977); Červený (2001). The spatial
variations of the involved quantities (velocity and its derivatives, amplitude, slowness, polarization etc.)
should be small with respect to the wavelength of the signal under consideration. Usually this requires
smoothing of the model.

Borehole logs are obtained on a completely different scale than reflection seismic data. This often
leads to miss-ties, since inappropriate smoothing was used to match the different scales of the experi-
ments. Smoothing is a process which occurs in the propagation of real seismic waves. In the far field
we observe band limited signals with limited resolution since the Earth serves as a low pass filter during
propagation. Thus, reasonable smoothing appears to be a natural process and unlikely to be harmful
to imaging. However, the smoothing tools currently available are not advanced enough to simulate the
smoothing happening in the real Earth. The smoothing usually applied these days is a global smoothing
of velocity models by spatially applying a smoothing operator. Bulant (2002) describes a new smoothing
method which is based on the minimization of the Sobolev norm. The technique is particularly suited
for applications in ray tracing and Kirchhoff type migration. Another sophisticated style of smoothing
could be based on directional averaging within the first Fresnel volume of each source receiver connec-
tion to obtain something in a way of a local effective medium at each step of the propagation. This
effective local medium would be anisotropic and frequency dependent.

Since these tools are not available yet, we try to construct a global smoothing procedure with current
tools, which are most close to the physics under consideration. The procedure to choose an appropriate
smoothing parameter for the application of the WRT technique and the traveltime based strategy for
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APM could look as follows: A frequency analysis of the reflection data provides an average of the
prevailing frequency in the data set. Then the lowest occurring velocity in the velocity model under
consideration is determined. The ratio of lowest occurring velocity and prevailing frequency provides
the critical spatial measure for the smoothing and the choice of the WRT parameters, particularly the
spatial dimension of ray cells (spatial separation of wavefronts, i.e., time step for the integration of
the ray tracing equations, and the spatial separation of rays; see the section on wavefront-oriented ray
tracing). The global smoothing of the velocity model is carried out such that all wave numbers below
the critical spatial measure are removed. This procedure helps to satisfy the condition of applicability of
HF methods to the model and data under consideration and to optimally choose the WRT parameters
for computational efficiency and sufficient accuracy

Conclusions and Outlook

The combination of a wavefront-oriented ray-tracing technique with a hyperbolic traveltime interpo-
lation leads to a new strategy for amplitude preserving migration of the Kirchhoff type for complex
media. This strategy is entirely based on traveltimes which are in any event needed to carry out the
diffraction stack. The fast computation of first and later arrival traveltimes is based on a wavefront ori-
ented ray tracing technique. The WRT technique provides a continuous illumination of the subsurface
with increased accuracy compared to classical wavefront construction approaches by propagating new
ray directly from the source. The new ray is traced without interpolation pertaining the accuracy of
the solver used to integrate the kinematic ray tracing system. An FD procedure provides the curvature
of the wavefront which allows an improved interpolation of traveltimes from the corners of ray cells to
the coarse traveltime grid. The ability of ray tracing techniques to compute traveltimes with sufficient
accuracy on coarse grids is a major advantage against FD eikonal solvers which compute first arrivals
only, and only work on fine grids.

A hyperbolic expansion is used to determine first and second spatial derivatives of traveltimes from
the coarse gridded traveltime tables computed by WRT for the velocity model under consideration.
These derivatives (or coefficients of the expansion) are the foundation of an efficient traveltime interpo-
lation from the coarse grid to the fine migration grid. This interpolation also works for source positions
and is therefore particularly efficient with respect to computer storage (only coarse traveltime grids
need to be stored) and CPU time (less shots need to be computed and stored). Choosing a ratio of
10 between fine and coarse grid, savings in computer storage of 105 are achieved for a 3-D model (103

grid points for every shot and 102 less shots, where we have assumed that shot and receiver spacing are
the same). The CPU time needed for 102 shots is saved minus the CPU time required to perform the
determination of the interpolation coefficients and the interpolation of shots. The total CPU savings
are in the order of 85% per shot.

The very same coefficients used for the interpolation are also used to compute migration weights
and the optimized migration aperture which makes this procedure for APM even more computationally
efficient. In this step, however, as for any other available APM technique a priori knowledge of the
structure is required. It can be obtained from the velocity model and/or a previous (e.g., unweighted)
migration. The traveltime based approach to determine migration weights can be combined with any
tool that provides traveltimes. Therefore, it is also a tool for first arrival amplitude preserving migration
using Finite Difference eikonal solvers which do not provide geometrical spreading or migration weights
directly.

The range of applicability of the hyperbolic expansion is broader than presented in this paper. It
is also applicable to 3-D heterogeneous anisotropic media (the assumption for the expansion is local
smoothness of the quantity to be expanded, no assumption on the model is made). The interpolation

13



of traveltimes is straightforward and should be of even larger value than in isotropic media. The
computation of traveltimes in anisotropic media using ray tracing needs about 5-10 times more CPU
time than in isotropic media. The adaption of the WRT to anisotropic media just requires the exchange
of routines concerning the computation of right hand sides of the kinematic ray tracing system and
some model related routines. The procedures to ensure continuous illumination and the determination
of traveltimes at grid points of the coarse grid remain unchanged. The relations of the coefficients to
geometrical spreading and the migration weights in anisotropic media still need further investigation.
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Gajewski, D., and Pšenč́ık, I., 1987, Computation of high-frequency seismic wavefields in 3-D laterally
inhomogeneous anisotropic media: Geophys. J. R. astr. Soc., 91, 383–411.

Gajewski, D., and Vanelle, C., 2001, Extending the T 2 −X2 method to 3-D heterogeneous media: 71th
Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts.

Geoltrain, S., and Brac, J., 1993, Can we image complex structures with first arrival traveltime?:
Geophysics, 58, 564–575.

Hubral, P., Schleicher, J., Tygel, M., and Hanitzsch, C., 1993, Determination of fresnel zones from
traveltime measuremnts: Geophysics, 58, 703–712.
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