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Goals
• Examine some essential characteristics of 

seismic wavefields and their Fourier transforms
• Understand the concept of phase space for a 

wavefield
• Examine tools for manipulating a wavefield on its 

phase space:
– raytracing, Fourier multipliers, pseudodifferential 

operators, Gabor multipliers
• Two extended examples

– deconvolution: application of Gabor multipliers
– wavefield extrapolation: application of 

pseudodifferential operators

Part 1

Seismic Data

Seismic Shot Record
200 geophones at 20m intervals••• ••• x
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( ), , constx z tψ =

( ), 0,x z tψ = ∈ ×\ \Geophones record

Want to know: 

•Positions of reflectors

•Values of the reflection coefficients



2

Purely elastic finite-difference simulation

Distance from source

D
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th

Distance from source
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Purely elastic finite-difference simulation

Surface recording of vertical motion

Receiver position

First breaks

Ground rollReflection

Seismic Shot Record

Seismic Shot Record

47.24 10x− 45.64 10x

Seismic Shot Record
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Seismic Shot Record
Gained

Seismic Shot Record
Gained and clipped

Surface recording of vertical motion

Receiver position

First breaks

Ground rollReflection

Part 2

Fourier Transforms

Fourier Transform
(symplectic)

( ) ( ) ( )

2

ˆ̂ , 0, , 0, e xi x t
x z x z t dxdtξ ωψ ξ ω ψ −= = =∫

\

( ) ( ) ( )

2
2

1 ˆ̂, 0, , 0, e
4

xi t x
x xx z t z d dω ξψ ψ ξ ω ξ ω

π
−= = =∫

\

Forward transform over space and time

Inverse transform over wavenumber and frequency

Synthetic First Break Event
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Seismic Shot Record
Gained and clipped

Fourier Transform
synthetic data

( ) ( ) ( )

2

ˆ̂ , , e xi k x t
xk x t dxdtωψ ω ψ −= ∫

\

( ),x t ( ),xk ω

symplectic

( )ˆ̂ ,xkψ ω( ),x tψ

Fourier Transform 
synthetic data

( ) ( ) ( )

2

ˆ̂ , , e xi k x t
xk x t dxdtωψ ω ψ − += ∫

\

( ),x t ( ),xk ω

normal

Exercise
Model an ideal linear event, g(x,t), using the Delta distribution:

( ) ( ), , ,g x t px t c p cδ += − + ∈ ∈\ \
where the Delta distribution has the property

( ) ( ) ( )0 0f u u u f u duδ= −∫
\

for any f that we care about.

Show that the 2D (symplectic) Fourier transform of g(x,t) is

( ) ( )ˆ̂ , 2 xic
x xg p e ξξ ω πδ ξ ω −= −

use this to explain the preference stated in lecture for the 
symplectic Fourier transform. For [ ]0,1p ∈
showing where several typical events lie in both domains.

make a sketch

Exercise
Conclusions from exercise:
• All events with the same slope (p-value) in (x,t) have the 
same amplitude spectrum in (ξx,ω).
• The slope of an event in (x,t) and the corresponding event 
in (ξx,ω) are inversely related.
• The value of p can be calculated directly from the ratio of 
ξx to ω in Fourier space.

Fourier Transform 
synthetic data

( ) ( ) ( )

2

ˆ̂ , , e xi x t
x x t dxdtξ ωψ ξ ω ψ −= ∫

\

( ),x t ( ),xξ ω
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Fourier Transform 
synthetic data

( ) ( ) ( )

2

ˆ̂ , , e xi x t
x x t dxdtξ ωψ ξ ω ψ −= ∫

\

( ),x t ( ),xξ ω

Fourier Transform 
synthetic data

( ),x t ( ),xξ ω

( ) ( ) ( )

2

ˆ̂ , , e xi x t
x x t dxdtξ ωψ ξ ω ψ −= ∫

\

Fourier Transform
real data

( ),x t ( ),xξ ω

( ) ( ) ( )

2

ˆ̂ , , e xi x t
x x t dxdtξ ωψ ξ ω ψ −= ∫

\

Fourier Transform Pairs
( ),x t ( ),xξ ω

( ),x tψ ( )ˆ̂ ,ψ ξ ω

Fourier Transform Pairs
( ),x t ( ),xξ ω

Fourier Transform Pairs
( ),x t ( ),xξ ω
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Fourier Transform Pairs
( ),x t ( ),xξ ω

Part 3

Phase Space

Local Fourier Transforms

( ),x t ( ),xξ ω

Apply a 2D Gaussian window in (x,t)

Local Fourier Transforms

( ),x t ( ),xξ ω

Localization in one domain causes blurring in the other

Local Fourier Transforms

( ),x t ( ),xξ ω

A larger window causes less blurring but is, of course, 
less local.

Local Fourier Transforms

( ),x t ( ),xξ ω

An even smaller window causes extreme blurring.
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Local Fourier Transforms

( ),x t ( ),xξ ω

Localizing somewhere else shows us a different 
spectrum.

Uncertainly Principle

Localization in (x,t) causes loss of detail in (ξx,ω). That is, 
we cannot precisely define the (ξx,ω) values at a precise 
(x,t) position. As Heisenberg showed in the context of 
quantum mechanics, this implies:

(uncertainty in (x,t))(uncertainty in (ξx,ω)) ≥ a constant

This is often stated as the time-width band-width theorem. 

Question: Just what is meant by “uncertainty” in such a 
statement? 

Time-width Band-width Theorem

Given any convenient measure of width, the time-width 
and bandwidth of a signal are inversely proportional.

( ) 2 1
0x x s x dx E−

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦
∫
\

( ) 2 1
0 ŝ d Eξ ξ ξ ξ −

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦
∫
\

( ) ( ) ( ) 222 1
0x x x s x dx E−

⎡ ⎤
⎢ ⎥∆ = −⎢ ⎥
⎢ ⎥⎣ ⎦
∫
\

( ) ( ) ( ) 222 1
0 ŝ d Eξ ξ ξ ξ ξ −

⎡ ⎤
⎢ ⎥∆ = −⎢ ⎥
⎢ ⎥⎣ ⎦
∫
\

( ) 2E s x dx= ∫
\

( ) 14x ξ π −∆ ∆ ≥

The equality holds only for a Gaussian signal.

Time-limited Band-limited Theorem

If a signal, not identically zero, is compactly supported 
then its Fourier transform cannot be and vice-versa.

It follows that any finite length signal cannot be bandlimited.

Correspondence

• Associated with a neighborhood of a point 
in (x,t), there is a local Fourier spectrum. 
(Strictly speaking this depends upon the 
details of the localizing window.)

• Resolution in the local spectrum is directly 
proportional to the size (radius) of the 
neighborhood.

Phase Space

( ) ( ): , , , , , ,x y zM x y z t ξ ξ ξ ω×
The phase space of a wavefield is the 8D manifold:

Methods that have been devised to directly manipulate 
a field on its phase space include:

• Ray tracing 

• Pseudodifferential operators

• Gabor Multipliers

• Nonstationary filters
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Part 3

Raytracing

Ray Parameter

interface

1θ

2θ

1velocity v=

2velocity v=

1 2

1 2

sin sin p
v v
θ θ= ≡Snell’s Law

Ray Parameter

sin constantk

kv
θ =

The ray parameter is 
conserved during 
propagation.

More generally: θ= angle between interface 
normal and ray

kθ

kv 1kθ +

2kθ +1kv +
2kv +

3kθ +
3kv +

Measurement of Ray Parameter

0
0sin v tl

x x
δδθ

δ δ
= =

xδdistance between two receivers =

wavefront

0θ

0θ

raypath
lδ

0

0

sin t p
v x
θ δ

δ
⇒ = =

Measurement of Ray Parameter

( ) 41.59 1.493500 ,1.55 1.92 10
3680 3160

t s s sm s
x m m m
δ
δ

−−≈ ≈ ×
−

xδ

tδ

Recall
xδ

wavefront

0θ

0θ

lδ

0

0

sin t p
v x
θ δ

δ
= =

0

0

cos t q
v z
θ δ

δ
= =

zδ0θ

2 2

2
0

1t t
x z v

⎛ ⎞ ⎛ ⎞∂ ∂⎟ ⎟⎜ ⎜+ =⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠∂ ∂
The eikonal equation: the 
foundation of ray tracing
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Ray Theory
- A high frequency approximation -

Assume “plane wave” solution

( ) ( )( )i t T xA x e ωψ −=
GG

2
2

2 2
1
v t

ψψ ∂∇ =
∂

Start with the wave equation

Ray Theory
- A high frequency approximation -

The transport 
equation gives 

amplitudes

2

2
A T A T∇ =∇ •∇

( )2 2
1T
v

∇ = The eikonal equation 
gives traveltimes.

This approximate theory gets better with higher 
frequency. In highly heterogeneous media, the 

theory is notoriously “touchy”.

Ray Theory
- Snell’s Law -

The eikonal equation is equivalent to Snell’s law.

Ray Theory
- Problems and Limitations -

• Traveltimes are usually better determined than 
amplitudes.

• This approximate theory gets better with higher 
frequency. In highly heterogeneous media, the 

theory is notoriously “touchy”.
• Diffractions are not usually simulated.

• Random media must often be smoothed to 
simulate wave behaviour.

Velocity model Raytracing in unsmoothed model
When Rays go Bad
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Raytracing in smoothed model Waves in unsmoothed media

Waves and rays in unsmoothed

M
et

er
s

Meters

Waves in unsmoothed
Rays in smoothed

M
et

er
s

Meters

Part 4

Stationary Filters and 
Fourier Methods

Stationary Filters

We define “signals” as 1D functions in Schwartz space:

( ) ( ) ( ), ,s t r t w t S∈

A 1D stationary filter operation is, for example,

( ) ( ) ( ) ( )( )ws t w t r d C r tτ τ τ= − ≡∫
\

which is a convolution integral.
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Stationary Filters

( ) ( ) ( )j j
j

s t w t r t dτ δ τ τ
∈

= − −∑∫
]\

Stationarity, or translation invariance, means that the “impulse 
response” of the system is “temporally invariant”, eg:

( ) ( )j j
j

r t r t tδ
∈

= −∑
]

( ) ( ) ( )j j j j
j j

r w t t d r w t tτ δ τ τ
∈ ∈

= − − = −∑ ∑∫
] ]\

Stationary Filters
This concept of stationary filters can be generalized in 
many ways including:
• Extension to signals in S', the space of tempered 
distributions.
• Extension to discrete sequences (digital signal 
theory).
• Inverse filter theory, Wiener filters.
• Fourier multipliers.

We consider the last of these explicitly.

Fourier Multipliers
Every stationary convolution operator has a corresponding 
Fourier multiplier:

( ) ( )( ) ( )( )1
ˆw ws t C r t F M Fr t−= =

1
ˆw ws C r F M Fr−= =

or more simply

where:

aM b ab≡
ŵ Fw≡

the Fourier transformF =

Fourier Multipliers
Inverse Operators

A Fourier multiplier has a simple inverse, if
1

ŵs F M Fr−=
then

provided that ˆ 0w≠

1
1

ŵr F M Fs−
−=

Fourier Multipliers
Inverse Operators

If 

( ) ( )1ˆ , 0,1
ˆ ˆsupIw
w w

µ
µ

= ∈
+

then

where 

ˆ 0w=

1
ˆ Iwr F M Fs−≈

somewhere in its domain, or is very small, then
a common practice is to seek an approximate inverse such as

Fourier Multipliers
Solution of PDE’s

2 2 2

2 2 2 2
1

z v t x
ψ ψ

⎡ ⎤∂ ∂ ∂⎢ ⎥= −⎢ ⎥∂ ∂ ∂⎢ ⎥⎣ ⎦

( ) ( )

2

2 2 2

2 2 2 2 2
1 1 ˆ̂ , , e

4
xi t x

x xz d d
z v t x

ω ξψ ψ ξ ω ξ ω
π

−⎡ ⎤∂ ∂ ∂⎢ ⎥= −⎢ ⎥∂ ∂ ∂⎢ ⎥⎣ ⎦
∫
\

( ) ( ) ( )

2

2

22 2
1 ˆ̂, , , e

4
xi t x

x x xz d d
z

ω ξψ α ξ ω ψ ξ ω ξ ω
π

−∂ =
∂ ∫

\

( )
2

2
2 2,x x v

ωα ξ ω ξ= − Fourier multiplier or symbol 
for the second z derivative.
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Fourier Multipliers
Solution of PDE’s

( ) ( ) ( )

2
12

1 ˆ̂, , , e
4

xi t x
x x xz d d

z
ω ξψ α ξ ω ψ ξ ω ξ ω

π

±
−±⎛ ⎞∂ ⎟⎜ =⎟⎜ ⎟⎜⎝ ⎠∂ ∫

\

( ) ( )1 2, ,x x ziα ξ ω α ξ ω ξ± =± =±

Now, we deduce two alternative expressions for the first z 
derivative:

2 2
2 2

2 2

2 2
2 2

2 2

,

,

x x

z

x x

v v

i
v v

ω ωξ ξ
ξ

ω ωξ ξ

⎧⎪⎪⎪ − ≥⎪⎪⎪=⎨⎪⎪⎪ − >⎪⎪⎪⎩
These are examples of one-way wave equations. They are 
exact for v=constant and 2 2 2

xvω ξ− ≥
However, this approach fails if v is not constant.

Fourier Multipliers
Solution of PDE’s

ψ+

Solutions to either of these one-way wave equations are 
also solutions to the two-way wave equation

1

1
2 2F M F

z z zα
ψ ψ ψ+

+
−

⎛ ⎞∂ ∂ ∂⎟ ⎡ ⎤⎜ ⎟⎜ = =⎟ ⎢ ⎥⎜ ⎟ ⎣ ⎦⎟⎜∂ ∂ ∂⎝ ⎠

21 1

2
1 1 1

2 2 2 2 2 2F M F F M F F M F
zαα α
ψψ ψ+ +

− − − ∂= = =
∂

1

1
2 2F M F

z α
ψ ψ+

+
− +∂ =

∂Let satisfy

Exercise

( ) ( )

2
2

1 , e
4

x zi t x z
x xA d dω ξ ξψ ξ ω ξ ω

π
− ±± = ∫

\

Show that 

(where A is arbitrary) solves the one-way wave equations 
on the previous slides. Then show that the + sign 
corresponds to waves traveling in the -z direction and the -
sign gives waves traveling in the +z direction.

What happens with this approach when v depends on x?

Problem

• We need wavefield analysis and filtering 
methods that adapt rapidly to spatial and 
temporal variations in the wavefield but 
still retain high fidelity.

• Raytracing offers rapid adaptation but poor 
fildelity.

• Fourier methods give high fidelity but poor 
spatial adaptivity.

Part 5

Pseudodifferential 
Operators

Pseudodifferential Operators
Consider the previous example when v=v(x):

( )
( ) ( )

2

2 2 2

2 2 2 2 2
1 1 ˆ̂ , , e

4
xi t x

x xz d d
z t xv x

ω ξψ ψ ξ ω ξ ω
π

−
⎡ ⎤∂ ∂ ∂⎢ ⎥= −⎢ ⎥∂ ∂ ∂⎢ ⎥⎣ ⎦

∫
\

( ) ( ) ( )

2

2

22 2
1 ˆ̂, , , , e

4
xi t x

x x xx z d d
z

ω ξψ α ξ ω ψ ξ ω ξ ω
π

−∂ =
∂ ∫

\

This integral is no longer an inverse Fourier transform but 
is instead an example of pseudodifferential operator, 
specifically of the Kohn-Nirenberg (standard) calculus.

( )
( )

2
2

2 2, ,x xx
v x
ωα ξ ω ξ= −
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Pseudodifferential Operators
Kohn-Nirenberg standard form:

( ) ( ) ( ) ( )( )1 ˆ ˆ,
2

ix I
sg x x h e d F h xξ

αα ξ ξ ξ
π

= ≡∫
\

Kohn-Nirenberg anti-standard form:

( ) ( ) ( ) ( )( )ˆ , ix
ag x h x e dx F hξ

αξ α ξ ξ−= ≡∫
\

In general a sg g≠ , although you should be able to find
an obvious case when they are equal.

Pseudodifferential Operators
These operators extend the idea of Fourier multipliers to 
the “nonstationary” setting.

Definition: The x dependence of the symbol will be called 
its nonstationary dependence.

Definition: A “stationary limit” of a pseudodifferential 
operator is any limiting form of the operator in which the 
nonstationary dependence of the symbol becomes 
constant.

Pseudodifferential Operators
We have:

1lim
s

I
stat

F F Mα α
−=

lim
sstat

F M Fα α=

lim sstat
α α=where

Pseudodifferential Operators

IFα

Initial state

Final state

Space-time 
Domain

Fourier 
Domain× ×

× ×

F

1F−

s
Mα

Fα

The green lines are stationary paths to the final state while 
the red lines are nonstationary. In general, the red paths 

give a different result if the same symbol is used.

s
Cα�

Spaces and Symbol Classes
Usually pseudodifferential operators can be extended to 
mappings:

:T S Sα ′ ′→
Symbols are classified by the order of their polynomial 
growth at infinity:

mSα∈

/ 221 , ,
m

O m
ρ

ρ
α ξ ρ
ξ

⎛ ⎞∂ ⎡ ⎤ ⎟⎜= + ∈ ∈⎟⎜⎢ ⎥ ⎟⎟⎜⎣ ⎦⎝ ⎠∂
` ]

We say

if

Symbols are also classified by their growth in x.

Pseudodifferential Operators
Back to the wave equation, in the variable velocity case, we 
might still hope that

( ) ( ) ( )
1

2
2

1 ˆ̂, , , , e
4

xi t x
x x xx z d d

z
ω ξψ α ξ ω ψ ξ ω ξ ω

π

±
−±⎛ ⎞∂ ⎟⎜ =⎟⎜ ⎟⎜⎝ ⎠∂ ∫

\

It turns out that this is still a useful approximate one-way 
wave equation but its solutions are not solutions to the two-
way equation.

( ) ( )1 2, , , ,x xx xα ξ ω α ξ ω± =±
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Pseudodifferential Operators
To see this, write

1
T

z α
ψ ψ+
+⎛ ⎞∂ ⎟⎜ =⎟⎜ ⎟⎜⎝ ⎠∂

and ask whether

2 1 1

2

2 ?
T T T

z α α α
ψ ψ ψ+ +

∂ = =
∂

D

That is, does the composition of
1

Tα+ with itself give
2

Tα ?

Pseudodifferential Operators
Composition Theorem

Let

T T Tβ α γ=D

be two pseudodifferential operators with suitablyTα Tβ
nice symbols. Then

i
x

β αγ αβ
ξ

∂ ∂− +
∂ ∂

∼ "

where γ has the asymptotic expansion

This expansion is written for 1D but generalizes to any 
number of dimensions.

,m n m nS S Sα β γ +∈ ∈ ⇒ ∈

Pseudodifferential Operators
So, 

where
1 1

T T Tγα α ψ ψ+ + =D

( )2 1 1
1 i

x
α αγ α
ξ

+ +
+ ∂ ∂− +

∂ ∂
∼ "

Thus, if we take 1 2α α+ =+ then we do not get an exact
factorization (i.e.           ). 2γ α≠

However, it is still possible to find an exact factorization in 
certain cases (e.g. Fishman …).

Pseudodifferential Operators
A problem with attempting this factorization using 
pseudodifferential operator theory is that the theory 
assumes the relevant symbols are elliptic.

Definition: A pseudodifferential symbol is said to be 
elliptic if there exists a constant C such that:

( ), ,x C xα ξ ξ> ∀ ∈\

Symbol ( )
( )

2
2

2 2, ,x xx
v x
ωα ξ ω ξ= − is not elliptic.

Part 6

Separable Symbols 

and

The Gabor Transform

KN Formalism

( ) ( )( ) ( ) ( )1 ˆ,
2

ixs x T r x x r e dξα α ξ ξ ξ
π

= = ∫
\If 

( ) ( )0lim ,
stat

xα ξ α ξ=

Then 

0

1lim
stat

s F M Frα
−=

Recall

a Fourier multiplier
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Approximate symbols

( ) ( ) ( )
2

, k k
k L

x xα ξ χ α ξ ε
∈

− <∑
]

Consider an arbitrary symbol

and corresponding functions {αk} such that

( ),xα ξ
One can always find a partition of { }, ,kx k ∈\ ]

( ) )11, ,

0,otherwise
k k

k

x x x
xχ +

⎧ ⎡⎪ ∈⎪ ⎣=⎨⎪⎪⎩

Piecewise Stationary Symbols

( ) ( ) ( ), k k
k

x w xα ξ α ξ
∈

=∑
]

Suppose the symbol is separable such that

( )kw x( )1kw x− ( )1kw x+

( ) 0kw x C∞∈

1.0

x

Piecewise Stationary Symbols
Standard Calculus

( )( ) ( ) ( ) ( )1 ˆ
2

ix
k k

k

T r x w x r e dξα α ξ ξ ξ
π ∈

⎡ ⎤
⎢ ⎥= ⎢ ⎥⎣ ⎦
∑∫
]\

( ) ( ) ( ), k k
k

x w xα ξ α ξ
∈

=∑
]

Then we have

( )( ) ( ) ( ) ( )1 ˆ
2

ix
k k

k

T r x w x r e dξα α ξ ξ ξ
π∈

=∑ ∫
] \

1
kk

k

T r w F M Frα α
−

∈

=∑
]

superposition of windowed Fourier multipliers

Piecewise Stationary Symbols
Anti-Standard Calculus

( )n ( ) ( ) ( ) ( ) ix
k k

k

T r w x r x e dxξ
α ξ α ξ −

∈

⎡ ⎤
⎢ ⎥= ⎢ ⎥⎣ ⎦
∑∫
]\

�

( ) ( ) ( ), k k
k

x w xα ξ α ξ
∈

=∑
]

Alternatively:

( )n ( ) ( ) ( ) ( ) ix
k k

k

T r x w x r x e dxξ
α α ξ −

∈

=∑ ∫
] \

�

1
k k

k

T r F M Fw rα α
−

∈

=∑
]

�

superposition of Fourier multipliers of a windowed function 

Equivalent forms

( ) ( ) ( ), k k
k

x w xα ξ α ξ
∈

=∑
]

For a separable symbol

1 ˆk k
k

T r w F rα α−

∈

=∑
]

kk
k

T r w C rα α
∈

=∑ �

]

1
ˆ ˆ

kw k
k

T r F C rα α−

∈

⎛ ⎞⎟⎜= ⎟⎜ ⎟⎜ ⎟⎝ ⎠∑
]

The following are equivalent
Exercise: Derive the 
corresponding formulae 
for Tα

�

Piecewise Stationary Symbols
Windowing Analogs

( ) ( ) ( ), k k
k

x w xα ξ α ξ
∈

=∑
]

1
k k

k

T r F M Fw rα α
−

∈

=∑
]

�

1
kk

k

T r w F M Frα α
−

∈

=∑
]

Windowed inverse 
Fourier transform

Windowed forward 
Fourier transform

This suggests the Gabor Transform!
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Limerick Limerick

Limerick Limerick

The Gabor Idea

A seismic signal

A Gabor slice or 
wave packet.

A shifted Gaussian

Multiply

A Partition of Unity
The key to a fast, robust Gabor transform

( )t k τΩ − ∆
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The Gabor Idea

A suite of Gabor 
slices

A seismic signal

The suite of Gabor slices will sum to recreate the original signal 
with high fidelity because of the partition of unity.

The Gabor Idea

Fourier 
transform

time

W
in

do
w

 c
en

te
r t

im
e

Suite of Gabor slices

W
indow

 center tim
e

frequency

Gabor spectrum or 
Gabor transform

The Gabor transform

The Gabor Idea
The inverse Gabor transform done two ways

Inverse 
Fourier 

transform

Sum

Inverse 
Fourier 

transform

(Window) & Sum

time W
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Gabor Transform

( ) ( ) 01,k k
k

x x C∞

∈

Ω = Ω ∈∑
]

Partition of unity

Let ( ) ( ) ( ) ( ) [ ]1

analysis window synthesis window

and , 0,1p p
k k k kg x x x x pγ −=Ω =Ω ∈�������	������
 ��������	�������


Then, the Gabor transform is defined by

( ) ( )( ) ( ) ( )2 2, :g kV s k F g s L Lξ ξ= → ×\ ] \

This particular Gabor transform is partially discrete by 
design. Fully discrete and fully analytic algorithms are 
easily derived.

Gabor Transform
Inverse

Given ( ) ( )( ),g kV s k F g sξ ξ= ∈ ×] \

( )1 1
g k k k k

k k

V V s F Fg s g s sγ γ γ− −

∈ ∈

= = =∑ ∑
] ]

The signal is recovered with a windowed inverse Fourier 
transform and a summation over windows.

Note that:
( )1 21gV V Lγ

− = ∈ \
( )1 21gV V P Lγ

− = ≠ ∈ ×] \
where P is a projection operator onto the range of the 
forward Gabor transform.

Gabor Transform

( )2L ×] \

Vγrange of

gV 1
gV Vγ

−

( ) ( )2domain gV L= \

1Vγ
−

gV

1Vγ
−

The range of Vg is only a subset 
of ZxR because a function must 
have a certain smoothness to 
be a Gabor transform.
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Gabor Multipliers

Given ( ) ( )( ),g kV s k F g sξ ξ= ∈ ×] \

1
k gr V M V sγ α

−=

( )kα ξ ∈ ×] \

We define a Gabor multiplier through the operation

Exercise

1
k gr V M V sγ α

−=

Consider the Gabor multiplier

If

lim
kstat

M Mα α=

Show that
1 1lim

k gstat
V M V s F M Fsγ α α

− −=

That is, the stationary limit of the Gabor 
multiplier is the Fourier multiplier.

Exercise

Consider the standard form K-N operator

suppose that the symbol can be written as

with

Show that 

( ) ( )( ) ( ) ( )1 ˆ,
2

ixs x T r x x r e dξα α ξ ξ ξ
π

= = ∫
\

( ) ( ) ( ), ,k
k

x x kα ξ γ β ξ=∑ ( ) 1k
k

xγ =∑

1
gT r V M V rα γ β

−= ( ) 1g x =with

Part 7

Gabor Deconvolution

Gabor magnitude spectrum of a 
raw seismic trace Attenuation and nonstationarity

1R

2R

Attenuation depends on path length. Therefore the 
seismic recording is inherently nonstationary, being a 
linear superposition of many different minimum-phase 
arrivals with differing degrees of attenuation.

source is 
minimum 
phase

each 
reflected 
arrival is 
minimum 
phase
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Attenuation and minimum phase 

FuttermanFutterman (1962) showed that wave (1962) showed that wave 
attenuation in a causal, linear theory is attenuation in a causal, linear theory is 
always minimum phase.always minimum phase.

Attenuation Simulation

True Amplitude

Attenuation Simulation

Normalized

Attenuation model

( ) ( ) ( ) ( )
0

ˆ ˆ , is w r e dωτω ω α τ ω τ τ
∞

−= ∫
Physical arguments show that seismic attenuation can be 
modelled as a pseudodifferential operator where

Fourier transform of the seismic trace( )ŝ ω

Reflectivity( )r τ

( )ŵ ω Fourier transform of the source signature

Attenuation model

( ),α τ ω
is the pseudodifferential symbol whose form is

( ), exp
2Q
ω τ

α τ ω
⎛ ⎞− ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

∼

( ) ( )( ), ln ,phase Hα τ ω α τ ω⎡ ⎤⎣ ⎦ ∼

The phase calculation is known as the “minimum phase 
assumption” and is a true for a causal, invertible time series.

Attenuation model

So we have a pseudodifferential symbol 
that is:

complex-valued
highly smoothing

exponentially decaying in τ and ω
Q(τ) is unknown
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Nonstationary seismic trace model

( ) ( ) ( ) ( )
0

ˆ ˆ , is w r e dωτω ω α τ ω τ τ
∞

−= ∫

reflectivity

source signature

seismogram with attenuation

Stationary seismic trace model

reflectivity

source signature

seismogram without 
attenuation

( ) ( ) ( )
0

s t w t r dτ τ τ
∞

= −∫

Stationary seismic trace model

1.00.50
seconds

0

0.5

1.0

se
co

nd
s

Stationary superposition process.

Nonstationary seismic trace model

0

0.5

1.0

se
co

nd
s

Nonstationary superposition process.

Well Log Reflectivity Well Log Reflectivity
Fourier Magnitude Spectrum
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Well Log Reflectivity
Gabor Magnitude Spectrum

Problem statement

Given only the seismic trace, the physical 
model just presented, and the assumption 
of a random reflectivity, then estimate that 
reflectivity.

What did Wiener do?

Stationary seismic trace model

( ) ( ) ( )ˆ ˆ ˆs w rω ω ω=

in the Fourier domain

Wiener’s deconvolution
actually due to Enders Robinson

measure the seismic trace 
and calculate its Fourier 
amplitude spectrum

estimate the amplitude 
spectrum of the source 
signature. Assume 
minimum phase.

calculate the reflectivity 
spectrum by Fourier 
spectral division

Observation

Wiener’s algorithm is enabled because the Fourier 
transform factorizes the convolution integral. 

The Gabor transform induces an approximate 
factorization (diagonalization) of the 
pseudodifferential operator model. This suggests a 
parallel to Wiener’s method using the Gabor 
transform.
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Nonstationary seismic trace model

( ) ( ) ( ) ( )1 ˆ, , ,g g gV s f V V w f f V r fγτ α τ τ− ⎡ ⎤≈ ⎣ ⎦

Thus we expect that

Gabor transform 
of seismic signal

Gabor transform 
of reflectivity

Projection Stuff we want to 
get rid of

Strategy: Estimate the “stuff we want to get rid of”
from the Gabor spectrum of the seismic trace.  Then 
develop a Gabor multiplier that is the algebraic inverse 
of the estimated stuff.

Synthetic Example

Input signal (reflectivity)

Attenuated signal (seismic record)

seconds

Gabor Factorizes Nonstationary Trace 
Model

≈
Seismic signal

Source 
signature Attenuation Reflectivity

Ti
m

e

Frequency

Ti
m

e

Frequency Frequency Frequency

a) b)

c) d)

Gabor Deconvolution

Comparison on Synthetic Gabor Deconvolution

0.5

1.0

0.0
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State-of-the-art alternative

0.5

1.0

0.0
Gabor Deconvolution

State-of-the-art alternative Validation of Gabor wavelets with a VSP

1000 m500 m

75 3C receivers in well at 20 m spacing

78 3C receivers on surface at 30 m spacing
500 m

1000 m

1500 m

1500 m

5 shots

Comparison of wavelets

WienerWiener estimates
Frequency spiking VSP estimates

Gabor estimates

0.5 s

0.8 s

1.1 s

Ongoing Industry Testing

Husky Energy Ltd. and Geo-X are conducting an 
extensive and detailed test of Gabor deconvolution 
versus their standard practice.  This is not an “easy 
win” for Gabor because standard practice has long 
included a number of ad-hoc correction algorithms, 
most notably TVSW, designed to address first-order 
nonstationary effects.
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Ongoing Test
Synthetic Data

Gabor

Ideal

Uncorrected

Standard

Ongoing Test
Gabor Decon and Well Ties

Ongoing Test
Conventional Processing and Well Ties

Ongoing Test
Observations

• Gabor is much better than standard 
practice on synthetic data.

• On real data, the methods are 
comparable with no clear cut winner (yet).

• Both Gabor and standard practice 
apparently have residual phase errors.

• Ideas are emerging to improve the Gabor 
process.

Summary

We have demonstrated that a complex-valued 
Gabor multiplier can be derived from seismic 

data to correct for attenuation effects.

On synthetic tests, this amounts to in inversion of 
a pseudodifferential operator by a Gabor 

multiplier.

Our method generalizes that of Wiener to 
nonstationary seismic records.

Part 8

Wavefield extrapolation
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Wavefield Extrapolators
Recall the one-way wave equation

( ) ( ) ( )
1

2
2

1 ˆ̂, , , , e
4

xi t x
x x xx z d d

z
ω ξψ α ξ ω ψ ξ ω ξ ω

π

±
−±⎛ ⎞∂ ⎟⎜ =⎟⎜ ⎟⎜⎝ ⎠∂ ∫

\

( ) ( ) ( )1 2, , , , , ,x x z xx x i xα ξ ω α ξ ω ξ ξ ω± ≈± ≡±

2 2
2 2

2 2

2 2
2 2

2 2

,

,

x x

z

x x

v v

i
v v

ω ωξ ξ
ξ

ω ωξ ξ

⎧⎪⎪⎪ − ≥⎪⎪⎪=⎨⎪⎪⎪ − >⎪⎪⎪⎩

Wavefield Extrapolators
We wish to solve the wavefield extrapolation problem:

z∆

( )0zψ =

( )z zψ =∆

given

find

upward traveling wavefield

( ) ( )
2

ˆ ˆ̂, , , , e
2

xi x
z x x x

i x z d
z

ξψ ξ ξ ω ψ ξ ω ξ
π

−∂ =
∂ ∫

\

( )
1

ˆ ˆ , ,xT z
z α
ψ ψ ξ ω∂ =
∂

or

one-way equation 
for upward 
traveling waves.

z

x

Wavefield Extrapolators
Formal Taylor series

( ) ( ) ( )2 2

2
0 0

ˆ ˆˆ ˆ 0
2

z z

z
z z

z z
ψ ψψ ψ
= =

∆∂ ∂∆ = +∆ + +
∂ ∂

( )
0

ˆ

!

k k

k
z

z
k z

ψ

=

∆ ∂+ +
∂

" "

( ) ( )
1 1 1

2

0 0 0
ˆ ˆ ˆ ˆ ...

2
z

z zT T Tα α αψ ψ ψ ψ
∆

∆ = +∆ + +D

which can be rewritten as

Wavefield Extrapolators
According to the composition theorem

( )1 1 0 0

times

ˆ ˆ
n

n

T T Tα α αψ ψ≡D "
��	�


is a pseudodifferential operator whose symbol has a first 
order approximation:

1
n

nα α≈

So, with an unknown error, we approximate the Taylor series 
as

( ) ( )21
1 0

1 ˆˆ ˆ1 ...
2 2

xi x
x

z
z z e dξα

ψ α ψ ξ
π

−
⎛ ⎞∆ ⎟⎜ ⎟⎜ ⎟∆ = +∆ + +⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

∫
\

Wavefield Extrapolators
Summing the series gives

( ) 1
0

1 ˆˆ ˆ
2

xi xz
xz e e dξαψ ψ ξ

π
−∆∆ = ∫

\

( ) ( ) ( ), ,1 ˆˆ ˆ, , ,0,
2

z x xi z x i x
x xx z e e dξ ξ ω ξψ ω ψ ξ ω ξ

π
∆ −∆ = ∫

\

( ) ( )( ) ( )1 ˆˆ ˆˆ, , , , ,0,
2

xi x
x x xx z W k x z e dξψ ω ξ ψ ξ ω ξ

π
−∆ = ∆∫

\

or

or

This is known as the GPSPI (generalized phase shift plus 
interpolation) wavefield extrapolator. 

( ) ( )
k x

v x
ω=

Wavefield Extrapolators
The GPSPI extrapolator

( ) ( )( ) ( )1 ˆˆ ˆˆ, , , , ,0,
2

xi x
x x xx z W k x z e dξψ ω ξ ψ ξ ω ξ

π
−∆ = ∆∫

\
Summary of approximations:

( ) ( )1 2, , , ,x xx xα ξ ω α ξ ω± ≈±

1
n

nα α≈

( )2 , ,x xα ξ ω is elliptic

The Taylor series converges

(1)

(2)

(3)

(4)

True only for homogeneous 
medium.

Only asymptotically valid even if the first 
derivative symbol is exact.

Elliptic means bounded away from 
zero and this is false.

It does in some specific cases but 
we don’t know in general.
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Wavefield Extrapolators
The GPSPI extrapolator

( ) ( )( ) ( )1 ˆˆ ˆˆ, , , , ,0,
2

xi x
x x xx z W k x z e dξψ ω ξ ψ ξ ω ξ

π
−∆ = ∆∫

\
Things we know (or think we do):

(1)

(2)

(3)

(4)

Any explicit finite difference method is an approximation to GPSPI.

“Screen” methods are approximations to GPSPI.

GPSPI produces very high quality seismic images but it is 
computationally expensive.

More accurate methods can be formulated simply as operators with
different symbols.

Fishman: Locally Homogeneous Approximation
3-Layer Profile

( )1Re α

x xξ

Fishman: Exact Operator Symbol
3-Layer Profile

( )1Re α

x xξ

Exercise
Schwartz Kernel of a Pseudodifferential Operator

( ) ( ) ( )1 ˆ,
2

i xs x x r e dξα ξ ξ ξ
π

−= ∫
\

given:

show by formal manipulation (don’t worry about conversion 
etc) that this is equivalent to

( ) ( ) ( ),s x A x y r y dy= ∫
\

( ) ( ) ( )1, ,
2

i x yA x y x e dξα ξ ξ
π

− −= ∫
\

The quantity A(x,y) is called the Schwartz kernel of the 
pseudodifferential operator and the integral applying A is 
called a singular integral operator.

Singular Integral form of a ΨDO 

s T rα=Given:

( ) ( )( ) ( ) ( ),As x I r s A x y r y dy= ≡ ∫
\

( ) ( ) ( )1, ,
2

i x yA x y x e dξα ξ ξ
π

− −= ∫
\

where

then, with suitable circumstances, it follows that 

Pseudodifferential Operators

IFα

Initial state

Final state

Space-time 
Domain

Fourier 
Domain× ×

× ×

F

1F−

s
Mα

Fα

AI
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Exercise
Schwartz Kernel of a Fourier Multiplier

1s F M Frα
−=

Given:

show that the Schwartz kernal depends only on x-y
(translation invariance) and that the resulting singular 
integral operator is just a convolution. 

( ):α ξ →\ \

Seismic Imaging Paradigm
A common seismic imaging methodology is derivable from 

first-order inverse Born scattering

( ) ( ) ( ), ,refl inc inc incx t r x x tΨ = ΨG G G

reflector

A reflectivity estimate.

( )inc , incx tΨ G

( )
( ) ( )

,
,

refl inc

inc inc

x t
r x

x t
Ψ

=
Ψ

G
G

G

Seismic Imaging Paradigm

Seismic imaging typically is done in the frequency domain 
and uses depth steps not time steps, so a more common  

imaging condition is:

( ) ( )
( )

, , ,
, ,

, , ,
refl

inck

x y z z k
r x y z

x y z z k
ψ ω
ψ ω

=∆ ∆
∆ =

=∆ ∆∑

Seismic Imaging Paradigm

So for each depth, we must calculate two fields:

( ), , ,refl x y n zψ ω∆

( ), , ,inc x y n zψ ω∆

The reflected field comes from 
mathematically marching the recorded 
data down into the earth.

The incident field comes from a 
mathematical model of the source 
wavefield that is also marched down.

In both cases, the wavefield marching is done through a 
“background” velocity filed that is presumed known.

Wavefield Extrapolators

The Schwartz kernel of the GPSPI extrapolator is

( ) ( ) ( )( )ˆ ˆ, , , 0, , ,x z x z W k x x x z dxψ ω ψ ω′ ′ ′∆ = = − ∆∫
So wavefield extrapolation is also accomplished with 

( )( ) ( )( ) ( )1 ˆ, , , ,
2

xi x x
x xW k x x x z W k x z e dξξ ξ

π
′− −′− ∆ = ∆∫

\

It turns out that W is not compactly supported. If a complctly
supported, accurate approximation can be found then we 
will have an efficient implementation of GPSPI.

Wavefield Extrapolators

( )ˆ const, , constxW k zξ= ∆ =

wavenumber
v
ω+

v
ω−

propagating

evanescent
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Wavefield Extrapolators

wavenumber
v
ω+

v
ω−

( )ˆ const, , constxphase W k zξ⎡ ⎤= ∆ =⎢ ⎥⎣ ⎦

propagating

evanescent imaginary

real

meters

Wavefield Extrapolators

In the space-frequency domain

Wavefield Extrapolators

Back to the wavenumber domain

wavenumber

( )F WΩ
Ŵ

Wavefield Extrapolators

wavenumber

Back to the wavenumber domain

Stabilization by Wiener Filter

Two useful properties

( )ˆ ˆ ˆ, , , , , ,
2 2x x x
z zW k z W k W kξ ξ ξ

⎛ ⎞ ⎛ ⎞∆ ∆⎟ ⎟⎜ ⎜∆ = ⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠
Product of two half-steps make a whole step.

( ) ( )
2

1 * 2
2

ˆ ˆ, , , , ,x x xW k z W k z
v
ωξ ξ ξ− ∆ = ∆ >

The inverse is equal to the 
conjugate in the wavelike region.

Stabilization by Wiener Filter

A windowed forward operator for a half-step

( ) ( )2 2W z W z∆ =Ω ∆�

( ) ( )1 ˆ2 2W z WI F W z
η− ⎡ ⎤∆ • = ∆⎢ ⎥⎢ ⎥⎣ ⎦

�
Solve by least squares for WI

0 2η≤ ≤
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Stabilization by Wiener Filter

is a band-limited inverse for WI ( )/ 2W z∆�
Both have compact support 

( ) ( ) ( )* 2FW z WI W z W z∆ = • ∆ ≈ ∆�
Form the FOCI™ approximate operator by

FOCI™ is an acronym for 

Forward Operator with Conjugate Inverse.

Properties of FOCI operator

( )( ) 1nF op for invlength W z n n n= = + −
Then

( )inv nn length WI= ( )( )/ 2for nn length W z= �
Let

Properties of FOCI operator

invn determines stability.

forn determines phase accuracy.

1.5inv forn n≈
Empirical observation:

Properties of FOCI operator

Amount of evanescent filtering is inversely 
related to stability

0 no evanescent filtering ( 1000 steps)
1 half evanescent filtering ( 100 steps)
2 full evanescent filtering ( 50 steps)

η
⎧⎪⎪⎪⎪=⎨⎪⎪⎪⎪⎩

" ∼
" ∼
" ∼

Operator tables
Since the operator is purely numerical, migration 
proceeds by construction of operator tables.

min
min

max
k

v
ω=

( )minnFW kmink
( )minnFW k k+∆mink k+∆

( )maxnFW kmaxk

max
max

min
k

v
ω=

( )
k

mean v
ω∆∆ =

( )min 2nFW k k+ ∆min 2k k+ ∆

" "

Operator tables

We construct two operator tables for small and large η. 
The small η table is used most of the time, with the large 
η being invoked only every nth step.

0 no evanescent filtering ( 1000 steps)
1 half evanescent filtering ( 100 steps)
2 full evanescent filtering ( 50 steps)

η
⎧⎪⎪⎪⎪=⎨⎪⎪⎪⎪⎩

" ∼
" ∼
" ∼
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Operator Design Example Improved Operator Design

Spatial Resampling

( ) 12 x −∆( ) 12 x −− ∆ Wavenumber

Fr
eq

ue
nc

y

Propagating

minxk vω =minxk vω =−

maxω

evanescent

Spatial Resampling

( ) 12 x −∆( ) 12 x −− ∆ Wavenumber

Fr
eq

ue
nc

y

In red are the wavenumbers of a 7 point filter

Spatial Resampling

( ) 12 x −∆( ) 12 x −− ∆

Fr
eq

ue
nc

y

Downsampling for the lower frequencies 
uses the filter more effectively

( ) 12 x −′∆( ) 12 x −′− ∆

Spatial Resampling

( ) 12 x −∆( ) 12 x −− ∆

Fr
eq

ue
nc

y

Spatial resampling is done in frequency “chunks”.
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Run Time Experiment
PS slope 1.04

FOCI (r) slope 1.06

FOCI slope 1.02

Slopes for last three points

Run Times log-log Scale

Phase Shift Impulse Response FOCI Impulse Response
nfor=11, ninv=15, (25 pt), no spatial resampling

FOCI Impulse Response
nfor=11, ninv=15, (25 pt), with spatial resampling

FOCI Impulse Response
nfor=21, ninv=31, (51 pt), with spatial resampling
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Marmousi Movie
Real Story

1000

2000

3000
1000 3000 5000 7000 9000

meters

m
et

er
s

Marmousi Data

1000

2000

3000
1000 3000 5000 7000 9000

meters

m
et

er
s

Marmousi Data

240 shots
96 receivers/shot

726 samples/receiver
8 bytes/samples

Dataset size= 240*96*726*8 ~ 134 Mbytes

Real datasets have 1000’s of 
shots, 1000’s of receivers/shot, 
and 1000’s of samples/receiver.

Marmousi Velocity Model

FOCI Pre-Stack Migration
51 Point Operator, 20 Hours on 1 PC

FOCI Pre-Stack Migration
Shot 30
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FOCI Pre-Stack Migration
Shot 30

FOCI Pre-Stack Migration
Stack +50*Shot 30

Detail of Pre-Stack Migration Marmousi Reflectivity Detail

Depth Migration Movie Marmousi run times

Full prestack depth migrations of Marmousi on a 
single 2.5GHz PC using Matlab code.

20 hours for the best result

1 hour for a usable result
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Conclusions

Explicit wavefield extrapolators can be made local 
and stable using Wiener filter theory.

The FOCI method designs an unstable forward 
operator that captures the phase accuracy and 

stabilizes this with a band-limited inverse operator.

Reducing evanescent filtering increases stability.

Spatial resampling increases stability, improves 
operator accuracy, and reduces runtime.

The final method appears to be ~O(NlogN).

Very good images of Marmousi have been 
obtained.

Overall Conclusions

The manipulation of a wavefield on its phase space 
offers new possibilities for improving seismic 

imaging.

Pseudodifferential operators and Gabor multipliers 
are powerful new signal processing tools.

There are lots of new things waiting to be done!
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